
FaaS Orchestration of Parallel Workloads
Daniel Barcelona-Pons
Universitat Rovira i Virgili

Tarragona, Spain
daniel.barcelona@urv.cat

Pedro García-López
Universitat Rovira i Virgili

IBM T.J. Watson Research Center
Yorktown Heights, NY, USA
pedro.garcia.lopez@ibm.com

Álvaro Ruiz
Universitat Rovira i Virgili

Tarragona, Spain
alvaro.ruiz@urv.cat

Amanda Gómez-Gómez
Universitat Rovira i Virgili

Tarragona, Spain
amanda.gomez@urv.cat

Gerard París
Universitat Rovira i Virgili

Tarragona, Spain
gerard.paris@urv.cat

Marc Sánchez-Artigas
Universitat Rovira i Virgili

Tarragona, Spain
marc.sanchez@urv.cat

Abstract
Function as a Service (FaaS) is based on a reactive program-
ming model where functions are activated by triggers in
response to cloud events (e.g., objects added to an object
store). The inherent elasticity and the pay-per-use model of
serverless functions make them very appropriate for embar-
rassingly parallel tasks like data preprocessing, or even the
execution of MapReduce jobs in the cloud.
But current Serverless orchestration systems are not de-

signed for managing parallel fork-join workflows in a scal-
able and efficient way. We demonstrate in this paper that
existing services like AWS Step Functions or Azure Durable
Functions incur in considerable overheads, and only Com-
poser at IBM Cloud provides suitable performance.
Successively, we analyze the architecture of OpenWhisk

as an open-source FaaS systems and its orchestration fea-
tures (Composer). We outline its architecture problems and
propose guidelines for orchestrating massively parallel work-
loads using serverless functions.

CCS Concepts • Computer systems organization →
Cloud computing.

Keywords Serverless, FaaS, orchestration, event-based
ACM Reference Format:
Daniel Barcelona-Pons, Pedro García-López, Álvaro Ruiz, Amanda
Gómez-Gómez, Gerard París, and Marc Sánchez-Artigas. 2019. FaaS
Orchestration of Parallel Workloads. In 5th Workshop on Server-
less Computing (WOSC ’19), December 9–13, 2019, Davis, CA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3366623.
3368137

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WOSC ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7038-7/19/12. . . $15.00
https://doi.org/10.1145/3366623.3368137

1 Introduction
Serverless Function as a Service (FaaS) is becoming a very
popular model in the cloud thanks to its simplicity, billing
model and inherent elasticity. The FaaS programming model
is considered event-based. That is, functions can be acti-
vated (triggered) in response to specific cloud events (e.g.
a change in an object store like Amazon S3). According to
the Reactive Manifesto [2], existing FaaS incarnations can
be considered reactive systems. They comply with the four
required properties: responsiveness, resilience, elasticity and
message-driven communication.

The FaaS model has also proven ideally suited for embar-
rassingly parallel computing tasks. For example, systems
like PyWren [12, 15] or ExCamera [7] have demonstrated
massively parallel computations (MapReduce jobs, video en-
coding) over serverless functions. Specifically, the disaggre-
gation of compute (cloud functions) and storage (object store)
services facilitated the necessary elasticity and flexibility of
the system to process huge volumes of data in parallel.

Unfortunately, PyWren and ExCamera required their own
ad-hoc external orchestration services to synchronize the par-
allel execution of functions. In particular, when the PyWren
client launches a map job with N functions, it polls Amazon
S3 until all N results appear in the S3 bucket. ExCamera also
relied on an external rendezvous server to synchronize the
parallel executions.

Clearly, such ad-hoc orchestrator services do not comply
with the four requirements claimed by Amazon for a server-
less service: (i) no server management, (ii) flexible scaling,
(iii) pay for value, and (iv) automated high availability [3].
No server management implies that users do not need to
provision or maintain any servers. Flexible scaling entails
that the application can be scaled automatically through
units of consumption (e.g., throughput, memory) rather than
units of individual servers. Pay for value is to pay for the use
of consumption units rather than server units. And finally,
automated high availability ensures that the system must
provide built-in availability and fault tolerance.

https://doi.org/10.1145/3366623.3368137
https://doi.org/10.1145/3366623.3368137
https://doi.org/10.1145/3366623.3368137

WOSC ’19, December 9–13, 2019, Davis, CA, USA D. Barcelona-Pons, et al.

We claim that if serverless functions follow a trigger-based
model, the FaaS orchestration system should also be trigger-
based. This means that in a DAG (direct acyclic graph) work-
flow, the termination of one or many functions should trigger
the next stage (function) using asynchronous events.
If the orchestration system is not trigger-based, reactive,

and asynchronous, the orchestrator will require some syn-
chronous blocking actions to wait for the termination of
cloud functions, or the transition between stages. Such syn-
chronous blocking actions imply unnecessary pull requests
compared to a pure asynchronous push-based approach. This
also requires an active orchestrator with increased billing
for long-running workflows.

In this document, we advocate for a trigger-based serverless
orchestration service for massively parallel workflows. To this
end, this paper presents the following contributions:

• We first compare parallel fork-join workloads with
three different services: AWS Step Functions, Azure
Durable Functions, and IBM/Apache Composer.

• We then analyze Apache OpenWhisk and Composer.
We describe the architecture and life cycle, showing the
overheads and limitations, concluding that workflow
orchestration must be reactive and event-based.

2 FaaS function orchestration
Serverless FaaS is based on the event-driven programming
model [6]. And event-driven systems have become the back-
bone of a myriad of distributed systems because of their de-
coupled and scalable architecture. Therefore, a logic reason-
ing is to use a reactive system for FaaS function composition
and orchestration. We take the definition of Reactive System
from the Reactive Manifesto [2]: a system is considered reac-
tive if it fulfills all four properties described in the manifesto.
First, a reactive system is responsive. The system provides
rapid and consistent responses. Second, it is resilient. When
a failure happens, the system remains responsive. Third, it
is elastic. The system reacts to varying workload and con-
tinues to provide the same responsiveness. And fourth, it is
message-driven. Component-to-component communication
is solved with asynchronous message-passing, which greatly
helps to make the system responsive, resilient and elastic.
The most relevant work aiming to provide reactive or-

chestration of serverless functions is the Serverless Trilemma
(ST) paper [5]. The authors advocate for reactive run-time
support for cloud function orchestration, and define the so-
called trilemma: first, functions must be considered black
boxes; second, function composition must obey a substitu-
tion principle with respect to synchronous invocation (i.e., a
composition should also behave like a function); and third,
invocations must not be double-billed. If all three proper-
ties are fulfilled, a system is considered ST-safe (Serveless
Trilemma-safe).

As a case study of a ST-safe system, the paper also presents
a solution for sequential compositions atop Apache Open-
Whisk. However, the authors explicitly renounce to event-
trigger function composition due to two technical problems
in the OpenWhisk implementation. First, the system lacks
function termination events to trigger subsequent functions.
Second, the inability to transfer results from function to func-
tion in a composition (e.g., a sequence), so as to respond with
the final result to the invoking client (synchronous invoca-
tion). Consequently, Baldini et al. propose a solution for ST-
safe sequence composition by using an internal procedure of
OpenWhisk (i.e., active ack)1 as termination events/triggers.
With extensive changes in the core using these triggers, the
system is able to orchestrate sequential compositions. This
same idea evolved later on into conductor actions [4], an
extension of OpenWhisk that allows the system to chain
function invocations with state machine logic. This is the
technology used by Apache Composer [9].
Azure Durable Functions (ADF) is in the same line to en-

able function orchestration within the FaaS service. However,
in this case the implementation is more of a wrapper around
functions, and not a modification of the service core.

Other systems have tried to orchestrate functions without
internal support. They can be classified into two types: (i)
functions to orchestrate functions; and (ii) external client
schedulers. In the first category (e.g., [13, 14]), the orchestra-
tion is performed inside a serverless function. However, this
approach suffers double billing: the orchestrator function
waits for the execution of the orchestrated functions (both
billed at the same time). In the second type (e.g., [7, 12]), an
external scheduler coordinates the functions, thereby avoid-
ing double billing. But, in this case, the substitution principle
is violated: compositions cannot be treated as functions since
they are external to the system itself. Additionally, the exter-
nal scheduler cannot be considered a serverless service.
The last category also includes previous approaches for

workflow management: Apache Airflow, Oozie [11] or even
BPMN workflow engines like Camunda [1] rely on a dedi-
cated long-running stateful workflow-execution engine that
manages the state machine of the orchestration. In this line,
Google Cloud Composer relies on a managed Airflow deploy-
ment (using a Kubernetes cluster per client) with a minimum
of three nodes to ensure fault-tolerance and responsiveness.

AWS Step Functions (ASF) is Amazon’s serverless orches-
tration service providing fault-tolerant workflows as state
machines. Unlike Google Cloud Composer, ASF is not of-
fered as a managed cluster; it is a serverless service that bills
per step transition in the workflow. Despite being server-
less, ASF follows an external client-scheduler model where
orchestrations are not themselves first-class functions, and
therefore, not ST-safe.

1Active ack is a pipeline bypass strategy in OpenWhisk to minimize request-
response latency.

FaaS Orchestration of Parallel Workloads WOSC ’19, December 9–13, 2019, Davis, CA, USA

Number of concurrent functions (n)

O
v
e

rh
e

a
d

 (
m

s
)

IBM Composer

AWS Step Functions

Azure DF (ext. sessions)

Figure 1. Parallelism overhead

3 Benchmarking parallel fork-join using
FaaS orchestration systems

In this section, we benchmark the overhead added by differ-
ent FaaS orchestrators offered by cloud providers. We pursue
to assess the performance of these services when managing
big amounts of parallel tasks in a workflow. Our candidates
are Step Functions at AWS, Azure Durable Functions at Mi-
crosoft Azure, and Apache OpenWhisk Composer at IBM
Cloud.
A previous work [10] already studied the overhead of

these services for sequences and parallel execution in a fork-
join manner. In the present work, we focus on the latter. We
update the data of the benchmark and extend it with up to
320 parallel tasks in the orchestration (the previous work
goes up to 80). Additionally, we include Apache OpenWhisk
Composer to the experiment.

For this experiment, we (programmatically) define a work-
flow in each service with a single parallel stage conformed by
n parallel instances of the same task, withn ranging from 5 to
320, and doubling each time. This task has a fixed duration of
20 seconds. Consequently, any execution of the experiment
should ideally last 20 seconds, irrespective of the parallelism
or environment. To put it in another way, in an ideal system
with no overhead, the execution time of the n concurrent
tasks should match that of a single task. Therefore, we com-
pute the overhead of the orchestration system by subtracting
the fixed time of a single task, namely 20 seconds, from the
total execution time. Note that this overhead is not only a
consequence of the system itself (i.e., implementation-wise),
but it also depends on the type of resources provisioned for
each service at every cloud infrastructure.
Figure 1 shows the overhead evolution when increasing

parallelism for the three services. ASF keeps growing ex-
ponentially up to the 320 parallel functions. However, the
results are very stable, meaning that the behavior is actually
implementation-related, and not a problem with resources.

5 10 20 40 80 160 320

Number of concurrent functions (n)

0

5000

10000

15000

20000

25000

30000

O
v
e

rh
e

a
d

 (
m

s
)

Figure 2. Variability in Composer’s parallel executions

It is important to notice here that past 80 tasks, the over-
head surpasses the fixed task time. Analyzing timestamps,
we see that when task 86 is scheduled, number 1 has already
completed, and the FaaS worker is reused. Therefore, the
maximum concurrency achieved in ASFwith this experiment
is around 85.

We also see that ADF seems unstable, like in the previous
paper. However, we do not see a clear exponential overhead.
We see a lot of variability, which can be explained with
restrictions or difficulties to obtain resources past the 20
concurrent functions. This makes us think that the increases
in overhead are not strictly limited by the implementation,
but by resource availability or provisioning. In this service,
we also see functions that are not scheduled until some have
already finished.

Since Apache Composer added support for parallel execu-
tions in January 2019, we also include it in Figure 1. As a first
insight, the orchestration overhead with Composer grows
more smoothly than with the other systems. This makes it
the best solution for high degrees of parallelism (40–320).
Overall, out of the three, Composer has the best support

for parallel task execution. However, we notice high variabil-
ity in the results. We explore further this behavior in Figure 2,
where we report the individual total execution times from
many executions. As can be seen in this figure, variability
increases with the amount of parallelism. Indeed, for 160
parallel tasks onward, variability exhibits bimodality, in the
sense that some executions incur a low overhead of ≈ 4.5
seconds, while in another group of executions, it climbs up to
20 seconds. This suggests that, although all tasks are sched-
uled within the 20 seconds of the fixed task duration, limited
resources lead to throttling the execution of some tasks until
a bulk of them have finished. We completed this experiment
by trying to identify the maximum degree of parallelism sup-
ported by Composer. Concretely, we observed a maximum
degree of parallelism of 450. The concurrent execution of a
greater number of functions resulted in system errors.

WOSC ’19, December 9–13, 2019, Davis, CA, USA D. Barcelona-Pons, et al.

We should note here that, although Composer uses Open-
Whisk’s conductor actions (which makes it ST-safe), the
implementation of parallel compositions is not integrated
in the FaaS platform. To achieve this kind of orchestration,
Composer needs a Redis key-value store to maintain inter-
mediate results and synchronize the execution. Furthermore,
each parallel composition spawns a function that remains
blocked during the parallel stage, which breaks the double
billing property.

Discussion All platforms offering orchestration of parallel
tasks incur in some overheads to schedule and maintain the
fault-tolerance capability of the execution. However, these
overheads vary from system to system. To wit, ASF is very
stable, but the penalty increases greatly with high paral-
lelism. This makes it the “go to” for simple workflows with
few parallel tasks, but not a good solution for fork-join-like
workloads. ADF scales better, but its high variability becomes
a problem with high degrees of parallelism. Composer is the
best solution available for fork-join-like compositions. Out
of the three, it is the only approach to achieve high levels of
concurrency with suitable performance, while its variability
could be mitigated with better resources.

4 Analysis of the internal architecture of
Apache OpenWhisk and Composer

We have seen that production orchestration services have
problems to offer parallel task compositions. However, Com-
poser is the closest to a fitting solution. Fortunately, both,
OpenWhisk and Composer, are open-source projects, and
we dedicate this section to analyze their architecture and
mechanisms to orchestrate function compositions.2 We iden-
tify the parts in their design that thwart an elastic, reactive
management of compositions.

4.1 OpenWhisk architecture
OpenWhisk is a FaaS system that enables users to code and
deploy event handlers (Actions) to the cloud, and register
them to respond to certain events. It is based on the following
main components:

• Controller: Its main task is to handle user requests. In
particular, the controller performs the authentication
and authorization of every request. It can be viewed
as the “orchestrator” of the system, since it decides the
path that each request will eventually take.

• Invoker: It is responsible for processing Action invoca-
tions. Each invoker manages several Docker containers,
whose purpose is to isolate the invocations from each
other and thus, support multi-tenancy.

2 OpenWhisk and Composer are both Apache projects initiated by IBM and
available on GitHub [8, 9]. The data from Section 3 corresponds to IBM
Cloud, and their deployment might differ from the architecture we detail.

Figure 3. OpenWhisk life cycle.

• Apache Kafka: Its only function is to allow logged com-
munication between the controller and the invokers.
The rationale behind its usage is to tolerate heavy loads
and system crashes. Since there exists the possibility
that there are not enough resources to run an Action
immediately, Kafka acts as a “buffer” where to hold
invocations until they are ready to be executed.

• Database (CouchDB): It stores the source code, logs,
results and metadata of the Actions, as well as authen-
tication information.

4.2 OpenWhisk simple life cycle
Fig. 3 depicts an overview of the Apache OpenWhisk life
cycle (red background circles indicate synchronous requests):
(1) The user makes an invocation request to the controller
via a REST API call. (2) The controller checks the database
for authentication and authorization and obtains the source
code to execute. (3) To get the Action invoked, the controller
choses an invoker and publishes the invocation message to
its Kafka topic. The user can perform this invocation either
asynchronous or synchronously. (4) The chosen invoker re-
ceives the invocation message from its topic. (5) Then, it
selects the appropriate Docker container, injects the code,
and runs it. The invoker makes the decision of either reusing
an existing “hot” container, starting a paused “warm” con-
tainer, or launching a new “cold” container. This step can be
synchronous. (6) The invoker forwards the response back
from the container to the controller through Kafka. At the
same time, it asynchronously stores the result to the data-
base for fault tolerance. (7) The waiting controller receives
the result either via Kafka (faster) or by polling the database
(safer, but slower) in the event of a Kafka failure. (8) The
controller replies with the result back to the user in case of
synchronous invocation.

4.3 Composer overview
Composer is a programming model for the composition of
OpenWhisk Actions [9]. It programmatically allows the cre-
ation of compositions and workflows, based on sequences,
conditions and parallels via a Node.js API. Composer is made
of three main parts:

• Client: It offers a rich API to end users that allows to
express a variety of compositions and deploy them

FaaS Orchestration of Parallel Workloads WOSC ’19, December 9–13, 2019, Davis, CA, USA

to Apache OpenWhisk. Importantly, the client is not
involved at all in the execution of the composition,
which happens entirely on OpenWhisk.

• Apache OpenWhisk conductor actions [4]: This ad-hoc
code was designed to give OpenWhisk’s controller a
native support for compositions. Particularly, conduc-
tor actions manage the series of user-defined Actions
to invoke at runtime as a state machine.

• Secondary actions: These intermediary functions are
responsible for the transitions between the execution
of the user-defined Actions. After each Action runs,
a secondary action is invoked, which determines the
next Action to be run in the workflow.

4.4 Composer simple life cycle
Fig. 4 shows an overview of the Composer logic life cycle. To
simplify, we explain the procedure of a composition with a
single user-defined Action. This diagram intentionally omits
details covered in Fig. 3 (e.g., Apache Kafka).
The life-cycle is the following: (1) The user invokes the

composition. (2) The controller checks the database to ob-
tain the secondary action code for the composition. (3) The
controller publishes the invocation message. The invoker,
in turn, receives it, injects the secondary action and (4) the
chosen Docker container runs it. In particular, it runs the
composition’s initialization and returns the next user Action
to run. (5) The invoker forwards the result to the controller,
which uses it to proceed to the next Action. (6) The con-
troller fetches the user Action code from the database and (7)
publishes the invocation message. The invoker, in turn, re-
ceives it, injects the code and (8) the chosen Docker container
runs the actual user Action and returns the result. (9) The
invoker forwards the result to the controller, which maps
the output of the current invocation to the parameters of the
next activation of the secondary action. (10) The controller
checks the database again for the secondary action code and
(11) publishes the invocation message. The invoker, in turn,
receives it, injects the code and (12) the chosen Docker con-
tainer runs the secondary action, which uses the output of
the last user Action to determine the next one to run (if any)
and returns it. (13) The invoker forwards the result to the
controller, which analyzes the next Action to run. (14) In this
case, as this is the last step and the composition was called
synchronously, the controller returns the result to the user.

4.5 Composer parallel execution life cycle
To orchestrate compositions, Composer takes advantage
from the integration of conductor actions [4] into the Open-
Whisk core. However, this integrated logic only works for
sequences with conditions. Simply put, there is no support
for running user-defined Actions in parallel in a composition.
An early version of Composer enables this feature with an
external user-provided Redis instance.

Figure 4. Composer life cycle.

4b

Figure 5. Parallel life cycle in Composer.

The life-cycle of this type of composition is depicted in
Figure 5: (1) A Redis instance must be provided by the user
and be accessible for Composer andOpenWhisk. (2) To runN
tasks in parallel, Composer deploys a main secondary action
and exactly N compositions. Each composition is made of
two secondary actions that wrap the current user-defined
Action as explained in the previous subsection. (3) The main
action runs and blocks by means of a blocking pop call to an
empty Redis list. (4) The first of the two secondary actions
runs and initializes its corresponding composition. (5) Once
this secondary action terminates, the actual user logic is
run. Since there are N independent compositions, the user
code is concurrently run N times. (4b) After the user code
is executed, the last secondary action in each composition
independently takes over and decrements an atomic Redis
counter. The last action to update the counter also unlocks
the main action by pushing an element to the empty Redis
list. (6) The main action resumes the execution, retrieves the
result of the composition and returns it to the user.

4.6 Discussion
The basic Composer architecture works well for the sim-
ple compositions it was initially designed (sequences and
conditions). It also presents good performance numbers for
parallel function orchestration compared to AWS Step Func-
tions and Azure Durable Functions.

The innovative aspect of Composer is to delegate composi-
tion/orchestration to serverless functions. This brings major
serverless benefits to orchestration like flexible scaling and
pay per use, which cannot be found in dedicated workflow
engines such as Airflow.

WOSC ’19, December 9–13, 2019, Davis, CA, USA D. Barcelona-Pons, et al.

But we consider that the solution proposed for parallel
executions is not reactive. First, it involves an external Redis
instance for users to implement the fork-join model. But
most importantly, a parallel stage needs a dedicated function
blocked, idle, on a request to that external Redis store. Such
a blocking call is enough to break the reactive definition, and
it may affect the system’s elasticity since it holds waiting
resources. But even more, it may incur on double billing,
since the blocked function is billed for the same time as the
actions in the parallel stage.

Additionally, Composer is not designed for long-running
parallel workflows that may be found in typical Big Data
pipelines. The blocked function waiting on Redis will be
effectively active all the time. Imagine the case where there
must be a long idle wait between two steps in a composition,
or a dependency on an external procedure or event (e.g., a
user input or something to appear in a database). In those
cases, Composer is likely to misuse resources and provoke in-
terferences to the FaaS runtime. The effects of such drawback
may be seen in the variability observed in Section 3.
We advocate for a more reactive solution to function or-

chestration. Instead of blocking the orchestrator function
waiting for results in the Redis store, non-blocking event-
based function sleep mechanisms should be available. A sus-
pend primitive like the one presented in [10] could be used
to build reactive function orchestrators.

5 Conclusions
Cloud providers are offering their services to create compo-
sitions of their FaaS platforms. AWS Step Functions, Azure
Durable Functions, and OpenWhisk Composer, offer similar
features but with very different approaches and program-
ming models. These differences make them perform differ-
ently. In this paper we focused on the orchestration of server-
less functions for parallel executions, and we have seen that
none of the platforms solves it with suitable performance.
Composer is the best solution available as of today. Its

idea of using serverless functions for the orchestration logic
is indeed a good decision to achieve fitting elasticity. How-
ever, its implementation of parallel executions fails to fulfill
a reactive scheme by adding a synchronous external con-
nection. Furthermore, the system falls short on allowing
long-running workflows (some steps would be billed for idle
time and waste resources); a direct consequence of the or-
chestration system being so tightly integrated in the FaaS
infrastructure itself.
After this study, we believe the next step towards elas-

tic orchestration of serverless functions requires a reactive
event-based design, avoiding double billing and blocking
external invocations.
We advocate for a novel suspend primitive for functions

that may be triggered by custom events (including function
termination events). The ability to suspend a function could

then enable the creation of third-party orchestrators not
directly tied to the underlying FaaS platform. This approach
obviously requires runtime support in the FaaS system and
rich trigger-based mechanisms for activating functions. But
such novel primitives could enable the creation of decoupled
orchestration services based on serverless functions. This
would be extremely useful for Big Data pipelines involving
parallel workloads and long-running compositions.

Acknowledgments
This work has been partially supported by the EU Horizon
2020 programme under grant agreement No 825184 and by
the Spanish Government through project TIN2016-77836-C2-
1-R. Marc Sánchez-Artigas is a Serra Húnter Fellow.

References
[1] 2013. Camunda Open Source Workflow Platform. https://camunda.

com/.
[2] 2014. Reactive Manifesto. https://www.reactivemanifesto.org/.
[3] 2019. Amazon AWS Serverless Definition. https://aws.amazon.com/

serverless/.
[4] 2019. Apache Conductor Actions. https://github.com/apache/

openwhisk/blob/master/docs/conductors.md.
[5] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod

Muthusamy, Rodric Rabbah, Philippe Suter, and Olivier Tardieu. 2017.
The Serverless Trilemma: Function Composition for Serverless Com-
puting. In Proceedings of the 2017 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward! 2017). 89–103.

[6] Opher Etzion, Peter Niblett, and David C Luckham. 2011. Event pro-
cessing in action. Manning Greenwich.

[7] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. 2017. Encoding, fast and slow:
Low-latency video processing using thousands of tiny threads. In 14th
USENIX Symposium on Networked Systems Design and Implementation
NSDI 17). 363–376.

[8] Apache Software Foundation. 2019. Apache OpenWhisk. https://
github.com/apache/openwhisk.

[9] Apache Software Foundation. 2019. Apache OpenWhisk Composer.
https://github.com/apache/openwhisk-composer.

[10] Pedro García-López, Marc Sánchez-Artigas, Gerard París, Daniel
Barcelona-Pons, Álvaro Ruiz, and David Arroyo-Pinto. 2018. Com-
parison of FaaS Orchestration Systems. InWoSC4 - UCC Companion.
148–153.

[11] Mohammad Islam, Angelo K Huang, Mohamed Battisha, Michelle
Chiang, Santhosh Srinivasan, Craig Peters, Andreas Neumann, and
Alejandro Abdelnur. 2012. Oozie: towards a scalable workflow man-
agement system for hadoop. In Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and Technologies.
ACM, 4:1–4:10.

[12] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. 2017. Occupy the Cloud: Distributed Computing for
the 99%. In Proceedings of the 2017 Symposium on Cloud Computing
(SoCC’17). ACM, New York, NY, USA, 445–451.

[13] Youngbin Kim and Jimmy Lin. 2018. Serverless Data Analytics with
Flint. CoRR abs/1803.06354 (2018). http://arxiv.org/abs/1803.06354

[14] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil
Figiela. in press. Serverless execution of scientific workflows: Experi-
ments with HyperFlow, AWS Lambda and Google Cloud Functions.
Future Generation Computer Systems (in press).

https://camunda.com/
https://camunda.com/
https://www.reactivemanifesto.org/
https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/
https://github.com/apache/openwhisk/blob/master/docs/conductors.md
https://github.com/apache/openwhisk/blob/master/docs/conductors.md
https://github.com/apache/openwhisk
https://github.com/apache/openwhisk
https://github.com/apache/openwhisk-composer
http://arxiv.org/abs/1803.06354

FaaS Orchestration of Parallel Workloads WOSC ’19, December 9–13, 2019, Davis, CA, USA

[15] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-
López. 2018. Serverless Data Analytics in the IBMCloud. In Proceedings

of the 19th International Middleware Conference Industry (Middleware
’18). 1–8.

	Abstract
	1 Introduction
	2 FaaS function orchestration
	3 Benchmarking parallel fork-join using FaaS orchestration systems
	4 Analysis of the internal architecture of Apache OpenWhisk and Composer
	4.1 OpenWhisk architecture
	4.2 OpenWhisk simple life cycle
	4.3 Composer overview
	4.4 Composer simple life cycle
	4.5 Composer parallel execution life cycle
	4.6 Discussion

	5 Conclusions
	Acknowledgments
	References

