
Towards Enhanced State Management for
Serverless Computation

DANIEL BARCELONA PONS

DOCTORAL THESIS
2022

Daniel Barcelona Pons

Towards Enhanced State
Management for Serverless

Computation

Doctoral Thesis

Supervised by

Dr. Pedro García López

Department of Computer Engineering and Mathematics

Tarragona
2022

FAIG CONSTAR que aquest treball, titulat “Towards Enhanced State Manage-
ment for Serverless Computation”, que presenta Daniel Barcelona Pons per a
l’obtenció del títol de Doctor, ha estat realitzat sota la meva direcció al De-
partament d’Enginyeria Informàtica i Matemàtiques d’aquesta universitat i que
compleix els requeriments per poder optar a la Menció Internacional.

HAGO CONSTAR que el presente trabajo, titulado “Towards Enhanced State
Management for Serverless Computation”, que presenta Daniel Barcelona Pons
para la obtención del título de Doctor, ha sido realizado bajo mi dirección en el
Departamento de Ingeniería Informática y Matemáticas de esta universidad y que
cumple los requisitos para poder optar a la Mención Internacional.

I STATE that the present study, entitled “Towards Enhanced State Management
for Serverless Computation”, presented by Daniel Barcelona Pons for the award
of the degree of Doctor, has been carried out under my supervision at the De-
partment Computer Engineering and Mathematics of this university and that it
fulfills all the requirements to be eligible for the International Doctorate Award.

Tarragona, 15 de Novembre/15 de Noviembre/November 15, 2022

El director de la tesi doctoral
El director de la tesis doctoral
Doctoral thesis supervisor

Dr. Pedro García López

Abstract
Cloud computing is evolving with new technologies and abstractions that make it
more accessible and fitting for many applications. In this line, and with fervent
interest from research and industry, there is the concept of serverless. In short, a
serverless service hides the existence of servers from users, so that they can focus
on their applications. In the trend to exploit the impressive elasticity of serverless
computing, distributed parallel computations such as analytics, machine learning,
and data processing have raised special attention from researchers.

However, current serverless services are unfitted out-of-the-box to support
parallel applications. Broadly, the issues come from a lack of state management,
coordination, and predictability. In consequence, several research lines open in
this context; we discuss three: 1) It is unclear how well can current serverless
services support distributed parallel computing. Parallel applications require exe-
cution simultaneity and performance consistency. Current platforms, however, do
not ensure that, and users may find extreme variability between services. 2) Cur-
rent serverless computing exclusively offers stateless ephemeral workers with no
direct communication. Applications built on top of these services struggle to man-
age their global state, specially to mutate it at fine granularity. Furthermore, it
is impossible to efficiently coordinate execution with precision. 3) Intermediate
data generated during data processing workloads is forcibly transferred between
workers and disaggregated storage. This data-shipping model generates expensive
data movement that also impacts application performance.

In this thesis, we present three novel core contributions to tackle the challenges
that manifest in the above lines of research. First, we categorize the main server-
less computing platforms from a parallel computation point of view. We carefully
investigate their architectural design and empirically evaluate them to find the
platforms that best fit to these applications. Second, we explore novel methods to
code stateful distributed applications in serverless. For this, we present the cloud
thread abstraction and build a shared objects layer that allows serverless workers
to share and mutate common state and easily coordinate their execution. Finally,
we study a solution to the serverless data-shipping problems through in-storage
ephemeral stateful computation. We build a storage system with integrated com-
putation that allows to offload data-bound tasks from serverless workers and sig-
nificantly reduce data transfers in data processing pipelines.

Acknowledgements

During my time at the Cloud and Distributed Systems Lab (CloudLab) research
group, where this dissertation has been slowly being crafted, I have met many
people. All of them deserve my thanks for what they have given me these last
years. First of all, I would like to send a special “thank you” to my advisor
Dr. Pedro García López for his help and advice in writing this thesis, but also
for his open mind towards doing research, patience, clear ideas, and the almost-
philosophical discussions we have sporadically found ourselves into. Without him,
this work would not have been possible. I also thank all the people who I have
shared some time with at the CloudLab, formerly AST, research group. Specially,
Marc Sánchez and Gerard París, who were a part of my daily life at the lab for
several years. Thank you for all those moments.

I would also like to thank all the people at the Cloud Data Platforms group at
IBM Research Europe in Switzerland for accepting me as an intern and for their
help and insights. I appreciate many people I met during the months spent there,
as well as everything I learnt; not only professionally, but also personally.

And most importantly, my deepest gratitude is to my family, for their love and
support. Specially my parents, whose hard work allowed my brothers and I to be
where we are now.

Daniel Barcelona Pons
Gandesa, October 2022

This work has been partially funded by the European Union Horizon 2020 Frame-
work Programme, in the context of the project CloudButton: Serverless Data
Analytics Platform (825184), and by the Spanish Ministerio de Ciencia, Inno-
vación y Universidades (Grant PID2019-106774RB-C22).

ix

Thesis Publications

• Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre Sutra,
and Pedro García-López. “On the FaaS Track: Building Stateful Distributed
Applications with Serverless Architectures”. In: Proceedings of the 20th
International Middleware Conference. Middleware ’19. Davis, CA, USA:
Association for Computing Machinery, Dec. 2019, pp. 41–54. isbn: 978-1-
4503-7009-7. doi: 10.1145/3361525.3361535. CORE A [34].

• Daniel Barcelona-Pons. “State Support for Serverless Cloud Services”. In:
6th URV Doctoral Workshop in Computer Science and Mathematics. Ed.
by Carme Julià and Aïda Valls. Tarragona, Spain: Publicacions URV, Apr.
2020, pp. 9–12. isbn: 978-84-8424-865-1 [30].

• Daniel Barcelona-Pons and Pedro García-López. “Benchmarking parallelism
in FaaS platforms”. In: Future Generation Computer Systems 124 (Nov.
2021), pp. 268–284. issn: 0167-739X. doi: 10.1016/j.future.2021.06.
005. JCR Impact Factor: 7.307, Q1 [31].

• Daniel Barcelona-Pons, Pierre Sutra, Marc Sánchez-Artigas, Gerard París,
and Pedro García-López. “Stateful Serverless Computing with Crucial”. In:
ACM Trans. Softw. Eng. Methodol. 31.3 (Mar. 2022). issn: 1049-331X.
doi: 10.1145/3490386. JCR Impact Factor: 3.685, Q1 [35].

Other publications

• Daniel Barcelona-Pons, Álvaro Ruiz-Ollobarren, David Arroyo-Pinto, and
Pedro García-López. “Studying the feasibility of serverless actors”. In:
Proceedings of the European Symposium on Serverless Computing and Ap-
plications, ESSCA@UCC 2018. Ed. by Josef Spillner. Vol. 2330. CEUR
Workshop Proceedings. Zurich, Switzerland: CEUR-WS.org, 2018, pp. 25–
29 [33].

• Pedro García López, Marc Sánchez-Artigas, Gerard París, Daniel Barcelona
Pons, Álvaro Ruiz Ollobarren, and David Arroyo Pinto. “Comparison of
FaaS Orchestration Systems”. In: 2018 IEEE/ACM International Confer-
ence on Utility and Cloud Computing Companion (UCC Companion). 2018,
pp. 148–153. doi: 10.1109/UCC-Companion.2018.00049 [66].

https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1016/j.future.2021.06.005
https://doi.org/10.1016/j.future.2021.06.005
https://doi.org/10.1145/3490386
https://doi.org/10.1109/UCC-Companion.2018.00049

x

• Daniel Barcelona-Pons, Pedro García-López, Álvaro Ruiz, Amanda Gómez-
Gómez, Gerard París, and Marc Sánchez-Artigas. “FaaS Orchestration of
Parallel Workloads”. In: Proceedings of the 5th International Workshop
on Serverless Computing. WOSC ’19. Davis, CA, USA: Association for
Computing Machinery, 2019, pp. 25–30. isbn: 978-1-4503-7038-7. doi:
10.1145/3366623.3368137 [32].

https://doi.org/10.1145/3366623.3368137

Table of Contents

Abstract v

Acknowledgements vii

Thesis Publications ix

List of Figures xv

List of Tables xvii

List of Abbreviations xix

1 Motivation and Challenges 1
1.1 Problem statement . 2
1.2 Contributions of this thesis . 5
1.3 Outline of this dissertation . 7

2 State of the Art 9
2.1 Serverless computing under study 10

2.1.1 Performance evaluation . 10
2.1.2 Architectural analysis . 11
2.1.3 Discussion . 12

2.2 Stateful serverless computing . 13
2.2.1 Serverless runtimes . 14
2.2.2 Programming frameworks 16

xii

2.2.3 Storage . 17
2.2.4 Distributed stateful computation 18
2.2.5 Discussion . 19

2.3 Data-shipping in serverless computing 20
2.3.1 Complete disaggregation . 21
2.3.2 Unified systems . 22
2.3.3 Computation-enabled storage 23
2.3.4 Discussion . 25

3 Studying Parallelism in FaaS 27
3.1 Introduction . 28

3.1.1 Scope and challenges . 28
3.1.2 Contributions . 29

3.2 Architecture analysis . 31
3.2.1 Comparative framework . 32
3.2.2 Architecture of AWS Lambda 33
3.2.3 Architecture of Azure Functions 35
3.2.4 Architecture of Google Cloud Functions 38
3.2.5 Architecture of IBM Cloud Functions 39
3.2.6 Architecture summary . 41

3.3 Experiment methodology . 43
3.3.1 Questions for discussion . 44
3.3.2 Function definition . 44
3.3.3 Function configuration . 45
3.3.4 On a bigger scale . 46
3.3.5 Experiment execution . 47
3.3.6 Metrics . 48
3.3.7 Plot description . 49

3.4 Experiment on Amazon Web Services 49
3.4.1 Results . 49
3.4.2 Discussion . 51

3.5 Experiment on Microsoft Azure . 52
3.5.1 Results . 52
3.5.2 Discussion . 55

3.6 Experiment on Google Cloud Platform 57
3.6.1 Results . 57
3.6.2 Discussion . 59

3.7 Experiment on IBM Cloud . 60
3.7.1 Results . 61

xiii

3.7.2 Discussion . 64
3.8 Experiment summary . 66
3.9 Do FaaS platforms fit parallel computation? 67
3.10 Chapter summary . 69

4 Serverless Stateful Computation 71
4.1 Introduction . 72

4.1.1 Scope and challenges . 72
4.1.2 Contributions . 73

4.2 Background . 74
4.2.1 FaaS computing: value under restraint 74
4.2.2 The dilemma of shared data 75
4.2.3 An overview of Crucial . 76

4.3 Using Crucial . 76
4.3.1 Programming model . 77
4.3.2 Sample applications . 79
4.3.3 Portage to serverless . 81

4.4 System design . 83
4.4.1 The distributed shared objects layer 83
4.4.2 Fast aggregates through remote procedure call 85
4.4.3 Lifecycle of an application 85
4.4.4 Fault tolerance . 86

4.5 Implementation . 87
4.6 Evaluation . 88

4.6.1 Micro-benchmarks . 89
4.6.2 Fine-grained state management 92
4.6.3 Fine-grained coordination 98
4.6.4 Smile library . 103
4.6.5 Usability of Crucial . 105

4.7 Chapter summary . 108

5 Serverless Ephemeral Computational Storage 111
5.1 Introduction . 112

5.1.1 Scope and challenges . 112
5.1.2 Contributions . 113

5.2 Background and motivation . 114
5.2.1 Serverless and temporary data 114
5.2.2 Data-shipping in serverless 115
5.2.3 An overview of Glider . 115

xiv

5.2.4 Requirements and challenges 116
5.3 Glider . 118

5.3.1 What code should we ship? 120
5.3.2 Using storage actions . 120

5.4 System design . 121
5.4.1 NodeKernel in brief . 122
5.4.2 Versatility through storage spaces 123
5.4.3 Actions within the storage namespace 124
5.4.4 The streamed I/O and execution model 127

5.5 Using Glider . 128
5.5.1 Application interface . 128
5.5.2 Developing actions . 130
5.5.3 Application example . 130

5.6 System implementation . 132
5.7 Evaluation . 134

5.7.1 Benefits . 135
5.7.2 Micro-benchmarks . 137
5.7.3 Extended application . 139

5.8 Chapter summary . 141

6 Conclusions and Future Work 143
6.1 Overview of contributions . 144
6.2 Future research directions . 147

Bibliography 149

List of Figures

2.1 Architectural approaches to data-shipping. 21

3.1 Abstract FaaS architecture. 31
3.2 AWS Lambda architecture. 33
3.3 Azure Functions architecture. 36
3.4 IBM Cloud Functions (OpenWhisk) architecture. 40
3.5 Experiment on AWS. 50
3.6 Large-scale experiment on AWS. 51
3.7 Experiment on Azure. 53
3.8 Experiment on Azure with limited concurrency. 54
3.9 Large-scale experiment on Azure. 55
3.10 Experiment on GCP. 58
3.11 Server errors on GCP. The red bars are rejected requests. 59
3.12 Large-scale experiment on GCP. 60
3.13 Guessing the VM on IBM for an execution with 200 requests. . . 61
3.14 Experiment on IBM. 63
3.15 500/0/𝑆/𝑠 on IBM. 64
3.16 Large-scale experiment on IBM. 65

4.1 Crucial’s overall architecture. 84
4.2 Operations per second performed on Crucial and Redis (with and

without replication). Cloud threads access uniformly at random
800 different keys/objects. 91

xvi

4.3 (a) Scalability of a Monte Carlo simulation to approximate 𝜋 . Cru-
cial reaches 8.4 billion random points per second with 800 threads.
(b) Scalability of a Mandelbrot computation with Crucial. . . . 92

4.4 Scalability of the 𝑘-means clustering algorithm with Crucial ver-
sus single-machine multi-threading. 93

4.5 Comparison of Crucial and the state-of-the-art. (a) Average lo-
gistic regression iterative phase completion time (100 iterations).
(b) Logistic regression performance. 96

4.6 Comparison of Crucial and the state-of-the-art. (a) Average 𝑘-
means iterative phase completion time (10 iterations) with varying
number of clusters. (b) Average 𝑘-means shared state access time. 97

4.7 (a) Synchronizing a map phase in MapReduce with PyWren, Ama-
zon SQS and Crucial. (b) Performance breakdown of an iterative
task using either multiple stages (a0/a1), or a single stage with a
Crucial barrier (b0/b1). 99

4.8 Average time threads spend waiting on a barrier. 100
4.9 Smile portage. (a) Performance per dataset using 50 trees. (b)

Varying the number of trees for the credit-card dataset [140]. . . . 104
4.10 Inferences per second performed on a 𝑘-means model for 6 min-

utes. Up to 100 concurrent FaaS functions connecting to the shared
model on up to 3 DSO nodes with 𝑟 𝑓 = 2. Note the FaaS cold start
at the beginning. 106

5.1 Glider’s approach to data-shipping. 116
5.2 Glider’s storage semantics for the application interface. 125
5.3 Glider’s storage data management architecture. 126
5.4 Diagram of a data processing aggregation with and without actions.

For one reducer out of a group of them. 131
5.5 Reduce operation with Glider against a data-shipping model. Left

shows total time elapsed. Right shows data transferred between
application workers and storage. 137

5.6 Average access bandwidth to files and actions for different operation
sizes. 138

5.7 Average access bandwidth for different numbers of concurrent ac-
tions. 139

5.8 Diagram of a sort job with Glider. 140
5.9 Sort execution time for a serverless architecture with Glider against

a data-shipping approach. 141

List of Tables

2.1 Serverless solutions for state sharing and coordination. 14

3.1 Traits of FaaS platforms (as of October 2020). See Section 3.2.1
for trait descriptions. 42

3.2 Function configuration for the different platforms. 45
3.3 Compute-intensive task on each platform. 46
3.4 Summary of experiment results. Parallelism metrics from Sec-

tion 3.3.6. 66

4.1 Programming abstractions . 77
4.2 Average latency comparison – 1 KiB payload 90
4.3 Santa Claus problem’s completion time (in seconds) on a single

machine and using Crucial. 102
4.4 Lines of code changed in each application to move it to FaaS with

Crucial. 107
4.5 Monetary costs of the experiments 108

5.1 Application programming interface of Glider. 129
5.2 Data ingested by workers, execution time, and data processing

throughput for the pipeline benchmark. Processing 10 GiB with
10 workers. 135

List of Abbreviations

𝜇s Microsecond
AOP Aspect Oriented Programming
API Application Programming Interface
AUC Area under the curve
AWS Amazon Web Services
BSP Bulk Synchronous Parallelism
CDF Cumulative Distribution Function
CLI Command-Line Interface
CPU Central Processing Unit
CRUD Create, Read, Update and Delete
DRAM Dynamic Random Access Memory
e.g. Exempli gratia
EC2 Amazon Elastic Compute Cloud
EMR Amazon Elastic MapReduce
FaaS Function as a Service
FPGA Field-programmable gate array
GB Gigabyte (109 bytes)
Gbps Gigabits per second
GCP Google Cloud Platform
GHz Gigahertz
GiB Gibibyte (230 bytes)
HDD Hard Disk Drive
HPC High-Performance Computing
HTTP Hypertext Transfer Protocol

xx

i.e. Id est
I/O Input/Output
IaaS Infrastructure as a Service
ID Identifier
IP Internet Protocol
JDK Java Development Kit
JVM Java Virtual Machine
KB Kilobyte (103 bytes)
KiB Kibibyte (210 bytes)
KVM Kernel-based Virtual Machine
MB Megabyte (106 bytes)
Mbps Megabits per second
MHz Megahertz
MiB Mebibyte (220 bytes)
min Minute
ML Machine Learning
MPI Message Passing Interface
MPI Message Passing Interface
ms Millisecond
NAT Network Address Translation
NIC Network Interface Card
NVM Non-Volatile Memory
OOB Out of bag score
OOP Object Oriented Programming
OS Operating System
PaaS Platform as a Service
POJO Plain Old Java Object
RDMA Remote Direct Memory Access
REST REpresentational State Transfer
RPC Remote Procedure Call
RTT Round-trip time
s Second
S3 Amazon Simple Storage Service
SDK Software Development Kit
SLA Service Level Agreement
SLO Service Level Objective
SLOC Source Lines of Code
SMR State Machine Replication
SNS Amazon Simple Notification Service

xxi

SQS Amazon Simple Queue Service
SSD Solid State Drive
TB Terabyte (1012 bytes)
TCP Transmission Control Protocol
TiB Tebibyte (240 bytes)
vCPU Virtual CPU
VM Virtual Machine
VPC Virtual Private Cloud

Chapter 1

Motivation and Challenges

Nowadays, the cloud is the first option for many companies and startups to build
their services and store their data. The ability to request resources and scale
their systems without needing to invest in hardware enables companies of any
size, and even particular users, to run solutions at scale from a simple laptop.
Although the cloud started offering simple virtual machines on demand (IaaS), it
did not take long for more specific services to appear, such as managed storage
solutions or communication brokers. The appeal of these services and what makes
them thrive is the responsibilities assumption by the cloud providers. With more
system management being dealt by vendors, cloud users can focus on developing
their applications and business logic. Through high-level abstractions, a modest
company with few resources can run and maintain large-scale services that are
automatically kept available and secure; a task that otherwise would require a
team of engineers. Aware of this, cloud vendors constantly strive for new services
and abstractions that facilitate cloud development to lure more users into their
products. One of the hottest topics currently in this matter is serverless.

The concept of serverless begun its wide usage with serverless computing to
define Function-as-a-Service (FaaS) platforms and quickly arose a fierce interest
in both industry and research. The ideas that uphold the term serverless are
simple: a serverless service should abstract any idea of a server from its users.
This means that the service should provide a useful abstraction (such as running
a piece of code, sending a message, or storing some data) that the user can use at

2 Chapter 1. Motivation and Challenges

any time, at any scale, and pay only and accurately for its usage. In other words,
the cloud provider scales the service automatically on demand, keeps it available
and secure, and offers it under a just-right billing plan.

These properties allow many services to be serverless. In general, we can
classify them into three categories: computation, storage, and integration tools.
Serverless computation services are those that allow users to run code by simply
providing it. In essence, users deploy their code by uploading the source into
the service and selecting the desired runtime. Then they configure the conditions
for its execution, i.e., a set of rules or triggers, or enable execution through di-
rect invocation requests. FaaS, or serverless functions, is the foremost example
of serverless computing, enabling the ephemeral execution of stateless functions
in response to events. This is why we will usually use serverless computing and
serverless functions interchangeably when referring to FaaS services. Nonethe-
less, we have seen other options explored with different abstractions [24, 50] and
container virtualization [12, 110]. Serverless storage dates from before the term
serverless gained popularity. Cloud-managed object stores and databases have
been part of vendors’ lineup for many years. A storage service should be server-
less if it offers an interface for accessing and handling data and keeps capacity
management away from its users. Finally, serverless integration tools include
communication services like distributed queues or event brokers, orchestration
managers in different flavors (e.g., state machines, DAGs, and other workflows),
connectors to other services, and any type of management tools that allow cloud
users to employ them without explicitly dealing with resources.

1.1 Problem statement
In this thesis, we take special interest in serverless computation, explore its limi-
tations, and find ways of expanding its application. Previous research has put the
limitations of serverless computing under study [83, 99]. We find several recurring
aspects about the issues of the model that can be summarized in three pillars:
state management, coordination/communication, and execution consistency/pre-
dictability. Serverless functions are ephemeral and, thus, stateless, which makes
it difficult to support distributed applications that share execution state and in-
creases remote data transfers. Similarly, distributed applications need coordina-
tion to progress in execution, and this is very difficult to achieve in a model that
bans direct communication between functions. And thirdly, the startup latency
of serverless functions varies unpredictably, which may affect applications that
require low latency or consistent performance to correctly exploit parallelism. For

1.1. Problem statement 3

instance, cold starts in functions do not only depend on runtime creation, but also
on environment initialization, dependency loading, and application set-up.

Among the many types of applications that have taken an interest in serverless
computing, there is one that raises special attention in research: large-scale dis-
tributed parallel computation. This area of application includes hot topics like big
data analytics [65, 98, 109, 141] and machine learning [42, 43, 93], and presents
important research challenges in the three pillars introduced above. Indeed, these
distributed programs generate and process huge amounts of data, require coordi-
nating their multiple tasks, and suffer from variability in performance.

Given all these high-level challenges that arise in a general analysis, we are first
interested in the characteristics and performance that existing FaaS platforms can
provide to parallel computation. A survey of the literature shows multiple studies
and benchmarks of FaaS platforms that qualify and compare basic properties like
configuration options, available runtimes, invocation latency, resources provided,
and more. However, none of these works focus on the traits that could directly
affect parallel computation with serverless functions, nor there is a detailed dis-
cussion on such topic. And this leads to our first research question:

Question I: What are the benefits and restrictions that serverless computing
architectures provide to parallel computing?

While basic FaaS properties are certainly important towards answering this
question, we believe further study is needed to understand parallel computing on
serverless functions. Parallel applications usually run tasks that closely collab-
orate on the computation. This means that they usually need to communicate,
synchronize, and share state. For this behavior to occur efficiently, simultaneity is
a key quality for success. Additionally, tasks are usually compute-intensive, which
require resources to be correctly isolated and consistent for best collaboration. It
is important to highlight that function concurrency, as advertised by services and
investigated in the literature, is not enough for these applications. To achieve
the best levels of simultaneity without performance degradation full-fledged par-
allelism is required. In other words, functions must be ensured to run on correctly
isolated resources to avoid interferences, the service must provide them eagerly to
reach the necessary scale, and resources must be spawned quickly to provide the
essential simultaneity. All these properties, however, have not yet been evaluated
in detail and remain an open question.

The uncertainty in these properties affirms on the third core limitation of FaaS
platforms (predictability), and already makes evident that building parallel ap-
plications for serverless computing is far from trivial. However, these applications

4 Chapter 1. Motivation and Challenges

also suffer from the other two pillars: shared state and coordination. Parallel
computation, like most traditional computing applications, is often complex and
stateful, requiring tasks to share global state and coordinate their progress in real
time. The complexity of implementing such applications on top of serverless com-
puting raises a fundamental challenge that we convey with our second research
question:

Question II: Can we efficiently use serverless computing for applications with
mutable shared state and complex coordination requirements?

Currently, there is no serverless system that effectively addresses these issues.
Since it is not possible to communicate functions directly, the common practice
is to use remote storage [98]. Mostly, existing solutions use object storage, which
is too slow for small application state. And while some propose using faster
in-memory stores to improve this matter [141], these systems are still unfitted
to handle mutable state at fine granularity. Furthermore, function coordination
is still very limited. FaaS orchestration services only allow coarse coordination
patterns [32, 66] and existing communication services are too slow to handle fine-
grained coordination between tasks. All in all, fine-grained state sharing is a
clear open issue and there is no general way to coordinate functions in arbitrary
patterns to support the requirements of many traditional applications, including
parallel computing.

The issues of serverless computing with data, however, do not stop with the
modest-sized mutable shared state. Distributed parallel applications usually in-
gest huge amounts of data from a separate storage system for processing. Even
in traditional compute clusters, such a model puts big pressure on the network
and becomes a bottleneck. This issue is known as the data-shipping problem.
Then again, parallel applications divide computation into several stages, which
need to transfer more data from one to the next. While traditional clusters can
keep these data locally, the ephemeral nature of serverless computation forces it to
be relayed through remote storage, worsening the repercussions of data-shipping.
Which brings us to propose the following research question:

Question III: Can we improve the data-shipping problem in serverless comput-
ing without hindering the advantages of serverless functions?

Data-shipping is still an open problem in serverless computing. There are no
services available that help diminish its effects. Existing research mostly focuses
on function orchestration tools that still require huge data movements. Others

1.2. Contributions of this thesis 5

have tackled data locality in serverless functions, but this requires modification
of the FaaS platform. The main hindrance of this approach is its impact on basic
beneficial properties of serverless computing. Indeed, it places restrictions on
function scheduling and placement, relaxes resource isolation, and heavily hinders
the elasticity that makes FaaS attractive. Furthermore, these solutions are limited
to small amounts of data and are not fit for holding intermediate results in multi-
stage computations.

A solution that has helped against data-shipping previously is co-locating com-
putation within the storage to offload specific tasks and significantly reduce data
transfers. This has yet to be explored in a serverless context and its application
is not trivial. Among several challenges that arise for this task, we focus our work
on the following: (i) compute and storage co-location may degrade performance
if not correctly handled; (ii) data-shipping in serverless is tougher and requires
storage computation that is stateful, something inexistent in the literature; and
(iii) storage computation should provide improved management of large interme-
diate data.

1.2 Contributions of this thesis
In view of the above open research questions, we describe here the three main
contributions of this thesis that aim to provide an answer to each of them.

Contribution I: Categorize FaaS platforms for parallel computation.

Our first contribution is a detailed benchmark of parallel computation on server-
less functions. For this, we carefully investigate the architectures and performance
indicators of the four major cloud FaaS services. In particular, these are AWS
Lambda, Azure Functions, Google Cloud Functions, and IBM Cloud Functions.
Differently from other benchmarks, we place special emphasis on those traits that
create a good environment for highly parallel computation. New to the literature,
we first describe and study the architectural approach of each service to manage-
ment and execution of functions. Furthermore, we build a comparative framework
to examine virtualization technologies, scheduling models, resource management,
and other components. Next, we empirically evaluate parallelism of FaaS plat-
forms in a specifically defined experiment. The experiment is designed to run a
controlled distributed parallel simulation and draw a detailed view of the execu-
tion timeline that evidences the simultaneity of tasks and performance achieved

6 Chapter 1. Motivation and Challenges

along with indications of its causes. Finally, we put both studies into consid-
eration to feed a discussion with the objective to understand the execution of
parallel applications in current serverless computing, visualize their performance,
and spot potential problems. All in all, to help users choose the best platform for
their applications.

Contribution II: Enable stateful serverless computing and coordination.

For the second contribution, we explore a simplified way to code stateful dis-
tributed applications in serverless. We combine two ideas to this end. First, we
present a cloud thread abstraction that maps the traditional notion of thread to a
serverless function for an easy orchestration of tasks. Second, cloud threads may
share global state thanks to a distributed shared objects layer. Shared objects
provide fine-grained mutation of state through the implementation of arbitrary
methods. Access to shared objects is transparent and strongly consistent out-of-
the-box, which smoothens development. Additionally, the layer includes different
primitives and communication collectives to enable fine-grained function coordi-
nation. We then propose Crucial, a framework that incorporates these ideas.
We design a very simple programming model with conventional multi-threaded
abstractions. This makes it possible to transform existing concurrent stateful
programs to serverless with just a few annotations and constructs. Although the
range of applications is very wide, we show these model in several applications
that are very complex to run on serverless computation right away. With limited
programming involvement, our framework allows us to quickly scale to server-
less traditional parallel computations, specialized ML training jobs, and complex
concurrency task coordination.

Contribution III: Enable serverless ephemeral storage computation.

Our third contribution consists in the formulation of computational storage
as a solution to data-shipping in serverless computing. In particular, we define
a serverless model for in-storage ephemeral stateful computation. It is a multi-
tenant storage service that grows elastically as a companion to serverless comput-
ing. Its key novel feature is its ability to offload computation to it and confront
the issues of data-shipping. Importantly, we define storage spaces to scale com-
putation and storage separately and not compromise performance isolation while
still provide improved synergy between them. At the same time, the main com-
putation tier (e.g., FaaS platforms) is unaffected so that it can be fully exploited

1.3. Outline of this dissertation 7

for its elasticity. Our contributions go beyond previous computational storage re-
search with storage actions. Actions are integrated within the storage namespace
and enable stateful computation beyond traditional stateless data interceptors.
This novel abstraction eases development and allows to solve more complex ap-
plications. Furthermore, we keep large intermediate data in mind, and provide
actions with a streamed I/O interface to speed up data processing in computing
pipelines. Finally, we provide different examples of applications that demonstrate
the applicability of our solution and its benefits, including a reduction of data
transfers in size and quantity, while improving the overall performance.

1.3 Outline of this dissertation
Here we provide a summary of the thesis chapters:

Chapter 2: State of the Art This chapter discusses the literature around
the research areas related to the thesis contributions. It includes modifications
of FaaS platforms and different solutions for stateful serverless computing and
coordination.

Chapter 3: Studying Parallelism in FaaS This chapter presents an empir-
ical study of FaaS platforms with special emphasis on parallel computation. The
conclusions throw light into different FaaS architectures and evidence the benefits
and caveats of using each platform for such demanding computation.

Chapter 4: Serverless Stateful Computation This chapter explores a novel
method for the programming of stateful serverless applications. With a disaggre-
gated object layer, programmers can combine FaaS functions with remote objects
to coordinate complex computation and share state.

Chapter 5: Serverless Ephemeral Computational Storage This chapter
presents an innovative serverless ephemeral computational storage model through
storage actions. Actions alleviate the effects of data-shipping present in serverless
computing by reducing far data movements.

Chapter 6: Conclusions and Future Work This chapter collects the con-
clusions evinced from this work and several lines for continuation, as well as some
discussion on future evolutions.

Chapter 2

State of the Art

This chapter reviews the state of the art relative to parallel stateful serverless com-
putation and coordination with the aim to bring the reader closer to the research
problems that motivate this thesis. The previously stated research questions and
contributions can be included in different areas of research. We tackle each of
them as follows:

For Contribution I (Categorize FaaS platforms for parallel computation),
we collect information from several benchmarking works and reviews of serverless
services. We study its properties and put especial emphasis on their affinity to
distributed computation and big data.

For Contribution II (Enable stateful serverless computing and coordination),
we review the current state of research and industry for stateful serverless com-
puting. This includes works on FaaS platform improvements, optimizations, and
other modifications; serverless orchestration and coordination systems, as well as
other programming frameworks; serverless storage systems and its applications
for intermediate data serving and coordination; and other novel complex systems
for stateful serverless computation.

For Contribution III (Enable serverless ephemeral storage computation),
we extend the previous information with a focus on the problem of data-shipping,
computation close to the data, and active storage systems.

10 Chapter 2. State of the Art

2.1 Serverless computing under study
The recent popularity of serverless computing has triggered the appearance of sev-
eral analysis, benchmarks, and studies tackling FaaS platforms and other server-
less services. An important concern when analyzing these services is that most of
them, including the most popular ones, are cloud services with proprietary code,
architecture, and infrastructure. This forces the community to explore the ser-
vices from a black-box perspective, which only allows for a high-level user point of
view. The lack of detailed information on how the systems work internally hinders
the ability of users to understand the affinity of each service to the requirements
of their applications, which can lead to dreadful, unexpected behavior in their
business solutions. In this section, we review the different benchmarks around
FaaS services that the community has engaged in since their appearance.

2.1.1 Performance evaluation

The most analyzed aspect of FaaS platforms is perhaps their cold start latency and
how it changes based on function configuration, such as memory size, runtime, or
trigger type. Indeed, there are research papers, blogs, and even dedicated websites
that either include cold start benchmarking or are specially focused on it [127,
165]. Extending that, many benchmarks in the literature also extensively explore
invocation latency in general (beyond cold starts) and CPU performance [152,
177]. For instance, there are studies that compare the CPU performance in a
function against traditional VMs and analyze how it evolves when varying the
function resources, usually by configuring memory. Other recent benchmarks [127]
extend this evaluation at service level with the function invocation throughput
as perceived by users. Also, another interesting quality studied in this line is
the function invocation cost and how it compares against other cloud computing
services.

In terms of scale, different works explore function invocation concurrency [49,
139, 159, 177]. These benchmarks perform large-scale experiments with multiple
concurrent function invocations and analyze the behavior of the FaaS platform
from a high-level point of view. Their objective is to collect information on max-
imum invocation concurrency supported by the platform and compare it against
service specifications and the requirements of several applications. In this line,
the measurements on a recent paper [168] regarding the QoS of different platforms
also show special emphasis on their concurrency and explore several issues with
resource allocation and function scheduling.

2.1. Serverless computing under study 11

A very interesting topic in FaaS benchmarks is service elasticity. A long dis-
cussed feature and one of the most important qualities in serverless technologies
is precisely their capacity to adapt their scale on demand by providing resources
to users as they are needed and release them afterwards for precise utilization and
billing. Hence, several benchmarks [112, 113, 116, 139] investigate this property.
To that end, they usually generate a dynamic workload of many invocations and
observe how the platform behaves under different demand patterns. This provides
information to analyze the capacity of each system to accept incoming requests
rapidly. In sum, these benchmarks evaluate the limits of FaaS platforms in num-
ber of running function invocations, performance degradation, and quickness in
adapting to demand. A recurrent conclusion is the evident performance varia-
tion across platforms that shows in their results. The causes for these issues and
variations, however, have yet to be explored.

Beyond FaaS performance studies, a few papers explore the affinity of the
model to more complex applications. A common type of application extensively
evaluated on serverless functions is batch computing for big data analytics. An
implementation of MapReduce [70] is evaluated for large computations on AWS
Lambda following the observations of PyWren [98] and ExCamera [65]. gg [64]
and Pocket [108, 109] also perform several analysis of large computations atop this
particular platform. AWS Lambda proves to be a good fit for the task, but other
platforms are left with very little experimentation. Other benchmarks perform
their evaluation from an even higher level and focus on orchestration tools atop
FaaS [32, 66]. They show that some platforms do not achieve good parallelism,
but do not explore the causes in detail.

2.1.2 Architectural analysis

The internals and architectures of commercial FaaS platforms are not studied in
detail, with just some comments in a paper [177]. This aspect is, however, certain
to affect the performance of the platform. The lack of information is not surprising
given the nature of the FaaS services in public clouds, which are proprietary
platforms with little documentation available about their internal structure. The
case of open-source FaaS platforms presents a very different situation, for which
we can find extensive analysis [133, 155], or even reference architectures [173].

A recent paper from Azure [156] offers some insights on how Azure Functions
works and a platform usage analysis from the perspective of the cloud provider.
However, the paper focuses its exploration on optimizing latency in cold starts
and reduce resource waste, and it disregards application performance and other
system properties such as concurrency, elasticity, isolation, or parallelism.

12 Chapter 2. State of the Art

2.1.3 Discussion

Several works leverage serverless functions for data analytics, linear algebra, ma-
chine learning, big data processing, and many other batch computing jobs. We
see a lot of interest in running these kinds of highly parallel computations on
serverless services. This makes sense due to the quick and accurate spawning of
thousands of workers in FaaS, that provides the required computing power for
each stage of a job without over- or under-provisioning resources.

All these highly parallel applications, however, require that the FaaS platform
provides enough parallelism for them to achieve good performance that competes
with traditional computing services. Nonetheless, as we have seen in our literature
review, parallelism in FaaS platforms is not investigated carefully enough.

Closely associated with parallelism, we discussed some benchmarks that eval-
uate system elasticity. However, the fact that a system is able to handle changes
in the amount of function invocation requests does not mean that these requests
will be handled appropriately to perform as expected by parallel applications
(i.e., achieving execution simultaneity without performance degradation). These
papers do not evaluate parallelism. In addition, the workloads utilized in these
works are usually I/O-bound, like reactive web applications, which do not repre-
sent the highly parallel computations we evaluate in this dissertation.

Question I places its emphasis on compute-intensive workloads and parallel
computing. These applications need strong guarantees on execution parallelism
and resource isolation to achieve good performance, but this has not yet been
evaluated. Existing benchmarks do not differentiate between resolving invoca-
tions concurrently and actually handling them in parallel to bring the required
performance. One objective in Contribution I is to explore the behavior of each
platform with deeper detail to evaluate these characteristics.

The architecture of a FaaS platform is very important to understand its perfor-
mance for parallel applications. The system design greatly determines its ability
to run invocations in parallel and isolate performance. While the results of the
surveyed benchmark papers evidence performance variation across platforms, they
usually disregard its causes and do not explore the architecture of each system
for properties or patterns that affect performance. A few papers partially dig into
the internals of platforms [177], but do not study its effects on performance and
parallelism.

Another discovery of our FaaS benchmark survey is the general focus on AWS
Lambda. Most articles in the literature that explore serverless parallel computa-
tion [65, 98] prove their ideas on Amazon’s cloud. In these works, AWS Lambda
seems a good fit for batch computations. However, to conclude that FaaS is a good

2.2. Stateful serverless computing 13

fit for parallel applications we still need to study and verify that other platforms
and their designs match these results.

In sum, none of the existing works investigates the architecture design of the
different FaaS platforms, and how it affects their performance for different types
of applications. Specially, there is a lack of detailed evaluation for highly parallel
computations, which have become popular in the literature.

2.2 Stateful serverless computing
Serverless computing has gained much traction and many works have been pro-
posed in this area. In this section, we survey runtimes (FaaS platforms), pro-
gramming frameworks, and storage systems specialized in serverless computing.
To finish, we include a review of (serverless and non-serverless) solutions to the
problem of stateful distributed computation. A summary of our findings appears
in Table 2.1, where we compare the most relevant serverless solutions that address
the problems of state sharing and coordination against the optimal objectives pre-
sented in Question II. The comparison is made along five dimensions:

• Storage. This category describes what storage media/service the system
uses to keep the intermediate state of an application. The storage type
determines the access latency for I/O operations. It ranges from object
stores, which exhibit high latency, to in-memory storage designed for fast
access and high throughput.

• Mutability. This category indicates how the system handles updates to the
shared state (e.g., fine-grained updates to arbitrary mutable data, append-
only semantics, etc.).

• Coordination. Here, we detail how coordination between multiple functions
is achieved and, most importantly, at which granularity. For instance, fine-
grained coordination allows functions to coordinate with well-known syn-
chronization primitives. On the contrary, coarse-grained coordination, such
as in the BSP model, only allows functions to progress in lock step.

• Durability. Some systems enable the shared state to survive system failures.
This dimension categorizes the methods employed to achieve such a prop-
erty, if available. Sometimes, application state is ephemeral and the benefits
of fast access outweigh the cost of making it durable [109].

• Consistency. Since concurrent accesses to the mutable shared state can
hit stale data, the system should provide a consistency criterion for the
programmer. Here, we list the existing guarantees offered by each system.

14 Chapter 2. State of the Art

Table 2.1: Serverless solutions for state sharing and coordination.

System Storage Mutability Coordination Durability Consistency

PyWren object store — coarse-grained replication weak

ExCamera rendezvous
server

— rendezvous
server

— —

Ripple object store — high-level
dataflow

— weak

Beldi key-value
store

transactions — replication strong

Pocket multi-tiered append-only coarse-grained ephemeral —

Cloudburst FaaS + cache lattice data
structures

coarse-grained replication weak:
repeatable
read and
causal

Faasm hierarchical:
local shared
memory +
global tier
(Redis)

byte-array
level

coarse-grained — variable;
strong via
explicit
locking

Optimal in-memory
store

fine-grained fine-grained optional strong

2.2.1 Serverless runtimes

Serverless computing has appealing characteristics based on simplicity, high scal-
ability, and fine-grained execution. It has seduced both industry [14, 25, 74] and
academia [84]. This enthusiasm has also led to a blossom of open-source sys-
tems, e.g., OpenWhisk [4], Kubeless [111], OpenFaaS [138], OpenLambda [84],
and Fission [62], to name a few.

The most common form of serverless computing systems are FaaS platforms or
services, which we review as serverless runtimes. At core, a serverless runtime is
in charge of maintaining the user-defined functions, executing them upon request.
It must ensure strong isolation between function instances and deliver fast startup
times to enhance the critical path of function execution. Many works propose to
tackle these two central challenges.

Micro-kernels [128] offer a solid basis to quickly start a function, even achiev-
ing sub-millisecond startup time. Catalyzer [59] introduces the sfork system call

2.2. Stateful serverless computing 15

to reuse the state of a running sandbox. Similarly, Firecracker [2] makes contain-
ers more lightweight and faster to spawn. SOCK [137] is a serverless-specialized
system that uses a provisioning mechanism to cache and clone function contain-
ers. SAND [3] exploits function interaction in FaaS to improve startup time and
resource efficiency. The system achieves these properties by relaxing isolation
at the application level, enabling functions from the same application to share
memory and communicate through a hierarchical message bus. Faasm [160] offers
similar guarantees using a language-agnostic runtime. Fast function initialization
is achieved thanks to a lightweight execution mechanism built atop the software-
fault isolation (SFI) facilities of WebAssembly. For data sharing between func-
tions, Faasm offers a two-tier architecture: the local tier provides in-memory data
sharing for co-located functions, while the global tier supports distributed access
across the whole system.

Rather than playing out with isolation guarantees for better performance, Con-
tribution II pursues to provide an efficient substrate for handling mutable state
and coordination at fine granularity over existing platforms (e.g., AWS Lambda),
which the above runtimes do not support in place. For instance, Faasm’s global
state tier is implemented with a distributed Redis instance, which is inefficient
for complex operations as we will see in Chapter 4. Also, two recent works coin-
cide that existing runtimes do not support mutable shared state and coordination
across cloud functions. Hellerstein et al. [83] underline that the serverless com-
puting model is a data-shipping architecture that imposes indirect communication
and hinders coordination. Jonas et al. [99] highlight the lack of adequate stor-
age for fine-grained operations and the inability to coordinate functions at fine
granularity.

Contribution II seeks a solution to these challenges that may run atop any FaaS
platform. This is however not a straightforward task since FaaS platforms do not
follow a common standard and necessitate users to rewrite entirely the scripts for
the deployment and invocation of functions for a new targeted platform. This issue
is common to many serverless applications. The dependency to the FaaS platform
causes a “vendor lock-in” and reduces code portability. Several projects try to
address this concern. The Serverless Framework [154] offers plug-ins to simplify
the deployment and execution of serverless functions over multiple clouds and
FaaS environments. RADON [44] targets the whole development stack with the
goal of providing a cloud-agnostic serverless programming experience. Similarly,
Lithops [147] hides under a common interface the deployment and execution of
serverless functions for different cloud settings.

16 Chapter 2. State of the Art

2.2.2 Programming frameworks

Several works that address the challenges of mutable shared state and coordination
confront them from a function composition perspective: a scheduler orchestrates
the execution of stateless functions and shares information between them.

Several cloud services support function compositions. AWS allows creating
state machines with Step Functions [22]. The Amazon States Language (JSON-
based) is, however, ill-suited to express complex workflows. IBM Composer [5] of-
fers a similar solution. In this case, function compositions are written in JavaScript
and then transformed into state machines. As before, the expressiveness of IBM
Composer is bound to a small set of constructs. Google Cloud Composer [73],
built on Apache Airflow, allows to create and run a DAG of tasks. In addition to
a poorer expressiveness than state machines, it requires to deploy multiple com-
ponents in Google Kubernetes Engine before the execution of a workflow, similar
to an on-premises deployment. Finally, Azure Durable Functions [25] enables
to programmatically coordinate function calls. It is the most complete solution
among all, allowing to write imperative code. Asynchronous calls to functions
are expressed in C♯, permitting to explicitly wait prior results. The major down-
side of the above services is their poor performance for running highly parallel
compositions [32, 66].

To sidestep the limitations in function coordination, PyWren [98] pioneered
the idea to use FaaS for bulk synchronous parallel (BSP) computations. The paper
shows the elasticity and scalability of FaaS and demonstrates with a base Python
prototype how to run MapReduce workloads. PyWren uses a client-worker archi-
tecture where stateless functions share state through slow cloud storage. IBM-
PyWren [149] evolves the PyWren model with new features and a broader support
to run fully-fledged MapReduce tasks. Further, Locus [141] extends PyWren to
support shuffling with a good cost-performance ratio. Tailored to linear algebra,
NumPyWren [157] manages a pool of stateless workers that run small tasks built
on the fly as the mathematical computation progresses. ExCamera [65] is another
system atop FaaS, more focused on video encoding and low latency. Its comput-
ing framework (mu) is designed to run thousands of threads as an abstraction
for cloud functions. It handles inter-thread communication through a rendezvous
server. gg [64] continues mu’s line for running serverless parallel threads, but tar-
geting a broader audience. Finally, Ripple [100] is a programming framework to
enable single-machine applications to benefit from the ample parallelism of FaaS
platforms. It provides a simple interface of eight functions for programmers to
express the dataflow of their applications. Also, it automates resource provision-
ing and handles fault tolerance by eagerly detecting stragglers. Before the full

2.2. Stateful serverless computing 17

computation run, the framework performs a series of dry runs to test and find the
best resource provisioning for the job.

Jangda et al. [96] propose an operational model for serverless platforms (named
𝜆𝜆), a simplified semantics, and an extension for stateful functions. The simplified
semantics is equivalent to 𝜆𝜆 when the cold and warm states of a function produce
the same result. The stateful extension adds a (global) transactional key-value
store that serverless functions may call. Extending serverless computing with
transactions is also the path taken in Beldi [184]. Compared with the previous
model [96], the one of Beldi does not serialize accesses to the data store through
a central lock.

Fault tolerance is a key concern when programming in a serverless environ-
ment. The 𝜆𝜆 model captures the fact that the FaaS platform may start multiple
instances to answer a request, yet use a single one to reply. The bisimulation result
by Jangda et al. [96] indicates when this is equivalent to executing the request
exactly once (that is under the simplified semantics). Serverless cloud vendors
warn programmers that serverless functions must be idempotent. Yet they do not
precise what does this mean, neither what to do when computation is stateful. In
their paper, Sreekanti et al. [163] introduce a layer that interposes between the
FaaS platform and the storage engine to ensure read atomicity when functions
access multiple data items.

2.2.3 Storage

Many frameworks focus on cloud function scheduling and coordination, while
using disaggregated storage to manage data dependencies. In particular, they
opt to write shared data to slow, highly-scalable storage [98, 149, 157]. To hide
latency, they perform coarse-grained accesses, resort to in-memory stores, or use
a combination of storage tiers [141].

Pocket [109] is a distributed data store that scales out and in on demand to
match the storage needs of serverless applications. It leverages multiple storage
tiers and right-sizes them offline based on the application requirements. Crail [166]
presents the NodeKernel architecture with similar objectives. These two systems
are designed for ephemeral data, which are easy to distribute across a cluster.
They do not use a distributed hash table that would require data movement when
the cluster topology changes, but instead use a central directory. Both systems
scale in to zero when computation ends.

InfiniCache [175] is an in-memory cache built atop cloud functions. The sys-
tem exploits FaaS to store objects in a fleet of ephemeral cloud functions. It
uses erasure coding and a background rejuvenation mechanism to maintain data

18 Chapter 2. State of the Art

availability despite the continuous fluctuations in the pool of cloud functions as
they are reclaimed by the provider. Similar to a traditional distributed in-memory
cache, InfiniCache has been designed to provide fast access to read-only objects
but not to mutate them. Sion [185] follows a similar idea.

The above works do not allow fine-grained updates to mutable shared state.
Such a feature can be abstracted in various ways. However, we need to look
beyond serverless systems and prototypes to find solutions for it. Furthermore,
our second challenge raises interest in systems that enable dealing with state by
keeping the inherent simplicity of serverless computing.

Existing systems such as Memcached [63], Redis [142], or Infinispan [129] can-
not be readily used for such purpose. They either provide too low-level abstrac-
tions or require server-side scripting. Coordination kernels such as ZooKeeper [89]
can help synchronizing cloud functions. However, their expressiveness is limited,
and they do not support partial replication [57, 101]. We explore these problems
in Section 4.6.

Creson [167] presents the concept of callable objects on top of Infinispan.
The system enables a simplified way of accessing shared state as remote objects
and keeps the well-understood semantics of linearizability. This brings Creson
close to the objectives of Question II, but it is not ready to resolve the concrete
issues present in serverless computing in regard to function coordination, access
transparency, and control over data durability.

Contribution II targets strong consistency in storage with the objective to
simplify programming. Some systems [158, 162, 169] rely instead on weak consis-
tency, trading ease of programming for performance. Weak consistency has been
used to implement distributed stateful computation in FaaS, as detailed in the
next section.

2.2.4 Distributed stateful computation

This section reviews different complete systems that are dedicated to enable dis-
tributed stateful computation, going beyond the frameworks discussed above. We
start with two proposals in the serverless space.

Cloudburst [164] is a stateful serverless computation service. State sharing
between cloud functions is resolved by building a custom FaaS platform atop
Anna [181], an autoscaling key-value store that supports a lattice put/get CRDT
data type. Cloud functions run coupled with the store for local access to shared
state. Cloudburst offers repeatable read and consistent snapshot consistency guar-
antees for function composition; something that is not achievable, for instance,

2.2. Stateful serverless computing 19

when using AWS Lambda in conjunction with S3 (i.e., computing 𝑥 + 𝑓 (𝑥) is not
possible if 𝑥 mutates).

Cirrus [42] is a machine learning framework that leverages cloud functions
to efficiently use computing resources. It specializes in iterative training tasks
and asynchronous stochastic gradient descent. Cirrus relies on a distributed data
store that does not allow custom shared objects and/or simple mutability options.
Furthermore, distributed workers cannot coordinate at fine granularity.

Besides serverless systems, there exist many frameworks for machine clusters
that target stateful distributed computation.

Ray [135] is a recent specialized distributed system mainly targeting AI ap-
plications (e.g., Reinforcement Learning). It offers a unified interface for both
stateless tasks and stateful actor-based computations. Ray motivates for the need
of a specialized system that combines stateful and stateless computations. This
is in line with Contribution II. However, Ray couples both models in the same
system and is built for a provisioned resource environment where stateless tasks
and actors live co-located.

Other systems with a focus on stateful computations, such as Dask and Py-
Torch, usually build on low-level technologies (e.g., MPI) to communicate between
nodes. These frameworks rely on clusters with known topology and fail to quickly
scale out or in to match demand. Such a design is also at odds with the FaaS
model, where functions are forbidden to communicate directly. Specialized dis-
tributed big data processing frameworks, such as MapReduce, are available as a
service in the cloud (e.g., AWS EMR).

2.2.5 Discussion

We have seen multiple attempts in the literature to utilize serverless functions
to execute distributed stateful applications at scale. However, very few focus on
resolving an efficient management of shared application state.

Some works focus on improving the FaaS platform or runtime itself, usually to
reduce invocation latency, refine scheduling, or enhance isolation and/or perfor-
mance. Others modify the runtime to include data storage on the platform itself
and allow several functions to share memory. This, however, complicates function
scheduling and the ability of functions to scale rapidly on demand. Contribution
II chooses to keep FaaS unchanged to preserve its full properties, and seeks for a
specialized system that harmonizes with functions to bring them a layer of shared
state and facilitate coordination.

The different frameworks reviewed present several ways to facilitate devel-
opment and deployment of serverless applications. None, however, provide a

20 Chapter 2. State of the Art

complete solution to the joint problem of fine-grained updates and coordination
(see Table 2.1). To wit, state sharing in PyWren, and others [141, 149], is too
coarse-grained and/or with weak consistency guarantees. Similarly, Ripple shares
intermediate results using Amazon S3, which is slow and provides an ill-suited
interface for tasks with fine-grained data sharing needs. ExCamera requires a
long-lived relay server to share state between workers with a low-level interface.
For certain operations such as AllReduce, the message-passing architecture can
become a bottleneck. The challenge presented with Question II is to keep com-
munication complexity low. Analogous concerns can be raised about coordination
in the surveyed systems.

In the case of storage systems, we find no options that are readily usable
for the objectives of our second research challenge. Most of the systems avail-
able in the cloud are slow object storage with weak consistency guarantees, that
are ill-suited for interactive state sharing in stateful applications and even worse
for fine-grained coordination. Traditional in-memory stores, on the other hand,
need heavy user management and are not prepared for complex state mutations,
requiring programmers to resolve complex communication patterns.

Lastly, traditional systems for distributed stateful computation cannot be sim-
ply used for serverless functions. This is mainly due to the lack of direct communi-
cation between functions and their ephemeral nature. Attempts in the serverless
space either modify the FaaS platform (with the caveats we already discussed) or
they are too application-specific to enable general stateful computation.

2.3 Data-shipping in serverless computing
The problem of data-shipping in the serverless computing model has been men-
tioned multiple times [83, 99, 105, 164]. The data processing pipeline is split
into several stages of ephemeral workers and the intermediate data they gener-
ate creates a problematic amount of network traffic. Its causes and effects have
been studied and categorized [83, 99, 108] with various works pointing out its
challenges and taking different paths to solve or palliate its consequences. We
see three main approaches to data management in distributed computation (from
left to right in Figure 2.1): A) a complete disaggregation of compute and stor-
age with separation of concerns, B) a combination of storage capacity within a
FaaS platform or vice-versa, and C) a disaggregated model with task offloading
to computation-enabled storage systems. In this section we review these mod-
els within the literature and see how they fall short to efficiently confront the
challenges of serverless data-shipping.

2.3. Data-shipping in serverless computing 21

λ

λ

A

λ

λ

A

λ

B

λ

λ
λ

λ
λ

λ

B

λ

λ
λ

λ
λ

λ

λ

C

λ

λ

C

Compute + Storage

Disaggregated Unified Active Storage

Compute Storage StorageCompute

Figure 2.1: Architectural approaches to data-shipping.

2.3.1 Complete disaggregation

The basic approach to data processing in serverless is to exploit the fast elasticity
of serverless functions to obtain massive parallelism [20, 98]. However, this kind of
computation generates lots of intermediate data that must be transferred between
computation stages, i.e., between serverless functions. To this end, the ephemeral
nature of serverless workers requires this information to be stored on disaggregated
storage, as drawn in model a in Figure 2.1. The common choice is to use cloud
object storage due to its high bandwidth. Nonetheless, the large amount of data
generated during data processing workloads quickly becomes a network bottleneck
in this model [83, 99].

This has raised the development of new solutions as a countermeasure. Some
of them explore the optimization of the services available in the cloud. For in-
stance, Primula [150] focusses on the MapReduce model and studies the problems
of serverless computing with disaggregated object storage. The authors create
a specialized model to improve the performance of applications. Other projects
search a solution by replacing the object storage with a more performant system,
or by adding an intermediate cache layer. Locus [141] creates a model to optimize
the use of storage in shuffle operations by combining slow (object storage) and
fast (in-memory cache) storage systems. ExCamera [65] uses a rendezvous server
to handle function communication and speed up state sharing. Other systems [52]
try to overcome these problems by enforcing direct function to function commu-
nication through NAT hole punching. This last method is, however, limited and
unreliable due to the ephemeral nature of functions. All these examples, among
others in the literature, show that data-shipping is very present and users struggle
with the insufficient tools available in the cloud.

Due to the lack of direct support in the cloud, we see some projects that build

22 Chapter 2. State of the Art

serverless storage solutions to efficiently handle the state of serverless applica-
tions. An instance of this is Pocket [109], a multi-tiered storage system based
on the NodeKernel architecture of Apache Crail [166], that is built for serverless
ephemeral data with multi-tenant capabilities and the ability to scale elastically
per application. These properties make Pocket more efficient as a FaaS com-
panion than available cloud storage systems such as object storage. Jiffy [105]
improves on Pocket’s ideas and builds a scalable remote memory system for server-
less functions. Functions can easily use this storage system as a shared space that
automatically grows or shrinks on demand and at fine granularity by adding or
removing small-sized blocks of memory.

Despite these many efforts, none of these works confront the fundamental
challenges of serverless data-shipping: reduce the amount of data being transferred
during computation. By fully following a complete disaggregation of compute and
storage, data must be irremediably moved back and forth between tiers, which
becomes an important bottleneck for serverless data processing workloads.

2.3.2 Unified systems

Understanding the problems of data-shipping, several projects combine storage
and computation in a unified system. Their goal is to co-locate computation and
its data (mostly by caching it) to avoid far network transfers as much as possible.
Generally, this model can be depicted as in diagram b in Figure 2.1. There are
several trends to this approach.

One interesting line of research opts to modify the FaaS platform to enable
functions to directly share data or exploit locality in some way. A first example of
this idea is SAND [3], that enables functions to directly share memory by relaxing
isolation. Similarly, Faasm [160] uses the software-fault isolation (SFI) facilities
of WebAssembly to share memory between functions. This is limited to functions
that can be co-located jointly, necessitating an external storage solution for global
distributed state access. SONIC [126] optimizes application performance and cost
with a data-passing manager that selects the optimal method for each communi-
cation in a workflow and implements communication-aware function placement.

Differently, some projects implement a FaaS platform on top of a storage
system. Cloudburst [164] brings serverless functions onto a distributed, auto-
scaling cache. Functions are run on the same system where they can store shared
data and exploit locality for improved performance. Shredder [186] also moves the
FaaS platform into the storage system server. It runs functions as WebAssembly
programs isolated in the storage cluster to enable faster access to data.

2.3. Data-shipping in serverless computing 23

Another trend is to exploit existing serverless platforms to build cache stores
on the function resources themselves. InfiniCache [175] and Sion [185] create in-
memory caches by leveraging vanilla functions in commercial FaaS services. They
use a fleet of functions and exploit the fact that providers keep function instances
warm to construct a pay-per-access serverless in-memory storage. Faa$T [146] is
an auto-scaling serverless distributed cache that is built within the FaaS platform
(implemented atop Azure Functions) and allows functions to store recurring data
co-located with the computation. Consequently, cache size and capacity scales
with the serverless function application, since they share resources. Similarly,
OFC [136] exploits the commonly underutilized memory resources in FaaS func-
tions to build an opportunistic memory cache distributed over the application
workers themselves.

All these projects fully couple storage and computation in shared resources,
which has been proved to be a problem in the past [46, 148]. In particular, this
approach creates resource contention and performance interferences between the
storage and compute features. Also, managing the scale of both components
jointly is usually inefficient for one, or both, of them. Consequently, computation
cannot scale freely like it usually does in dedicated FaaS platforms (which is one
of their most appealing advantages) and their storage capacity is very limited,
which is unfitting for large intermediate data.

2.3.3 Computation-enabled storage

Running computation close to the data to exploit data locality and improve per-
formance is a long-explored idea nowadays. This concept has been applied from
the hardware level and all the way up to the highest software abstractions in
cloud services. Computational storage is a term mostly used for close to the data
computation applied to hardware components. The most relevant cases are active
disks [1, 104, 172] and, more recently, SmartNICs [60, 61, 87]. The former refers to
storage drives (HDD, SSD, etc.) with computational capacity, while SmartNICs
are Network Interface Cards with programmable packet-processing capabilities.
These concepts enjoy recent interest thanks to the advances in technologies like
FPGAs [117]. Close to the data computation has also been applied from a soft-
ware perspective in distributed systems. For instance, databases expose interfaces
to install and run stored procedures [82, 143] and coprocessors [6, 174].

For distributed storage systems, the concept of close to the data computation
has been studied in the past as active storage [145]. Over the years, active storage
has been researched for many different storage systems [95, 125, 178, 183]. A cou-
ple recent examples are Scoop [132] and Lamda-Flow [80]. These systems utilize

24 Chapter 2. State of the Art

the computing resources in the storage systems to enable analytics frameworks
such as Apache Spark to offload operations to an active storage layer. From a
general perspective, this model resembles diagram c in Figure 2.1. The main com-
putation cluster (represented as serverless workers in the diagram) may trigger
the storage operation when objects are uploaded or downloaded to or from the
storage system. These computations are simple stateless interceptions that exe-
cute in the data path. Scoop allows to offload Spark SQL selections to OpenStack
Swift object storage, while Lamda-Flow focuses on the automatic identification
of Spark dataflow operators that can be pushed to an active storage system. The
results of active storage research demonstrate huge data transfer savings between
compute and storage tiers and an effective way to counteract data-shipping in
cluster computing.

However, this has some drawbacks that become of special relevance in the con-
text of the cloud. An important development in this research field is the awareness
and management of resource contention in active storage systems. As an instance
of this, Chen et al. [46] study the impact of resource contention in these systems
and propose an architecture to mitigate the effects of the problem. In the evalua-
tion, the authors conclude that resource contention is a critical problem for active
storage systems. This problem is further explored by Zion [148], which brings the
issues to cloud object storage. The cloud setting requires special attention due
to differences in data access and management. But more importantly, the multi-
tenant nature of cloud services places special emphasis in resource contention
issues. As a solution, Zion proposes an architecture with an active storage layer
correctly isolated from the storage resources. Object accesses can still be inter-
cepted by user-provided stateless functions in a model that resembles serverless
functions in storage.

This is, in fact, the only approach that has been adopted, to some extent, by
the cloud. Some cloud object storage services now include extensions that exploit
these ideas. This is the case of Amazon S3 Select [18], that enables to filter
data read from objects using simple SQL select queries through HTTP requests.
But we also have the recent S3 Object Lambda [17], an alternative S3 endpoint
that intercepts all object accesses with AWS Lambda functions that the user can
code freely. Functions in S3 Object Lambda allow to preprocess data from S3
(e.g., filtering, compressing, etc.) and, differently from normal Lambda functions,
include streamed data transfer between function and client. While S3 Select runs
queries in the storage system, Object Lambda is still a separate service and cannot
fully exploit data locality.

All these solutions, however, are not enough to satisfy the demands of data pro-
cessing workloads in serverless. Traditional systems that integrate computation

2.3. Data-shipping in serverless computing 25

into an object store suffer from resource contention and performance interference.
Solutions like Amazon S3 Select, that try to control this with predefined oper-
ations, are too limited in versatility to support all the needs of serverless data
processing. The active storage layer in Zion allows to scale storage and com-
putation separately in the same system, but it essentially works like a serverless
functions platform invoked from the object storage proxies that intercept the data
access path. S3 Object Lambda adopts a very similar approach where serverless
functions intercept S3 data operations. In both cases, computation is not fully
integrated within the storage system, and it is encapsulated in ephemeral, state-
less functions. Stateless computation promotes moving data, and it is limited
in use cases. Serverless data processing generates more intermediate data than
traditional cluster computing due to the ephemeral nature of their workers, which
cannot communicate between them nor keep state throughout stages. Stateless
storage interception is not enough to resolve these situations that are unique to
serverless computing. An active storage solution that enables stateful computa-
tion is currently non-existent. And lastly, temporary data requires a specialized
data management approach that object stores do not provide [166]. In this sense,
there is no active storage to efficiently handle ephemeral data.

2.3.4 Discussion

We have seen many works in industry and research that employ serverless comput-
ing (particularly FaaS services) to run large scale, distributed applications such
as data processing workloads. The inherent limitations of current platforms en-
force a data-shipping model to implement these applications. Since functions are
ephemeral and anonymous, any data they produce or consume must be handled
in a disaggregated storage. This puts significant pressure on network transfers,
which usually becomes the bottleneck in a model where workers tend to have
modest network links [108, 177].

Researchers quickly identified this issue and started to propose solutions to
optimize data transfers. We review several of these projects. A first idea was to
exploit the elasticity of FaaS to reach high aggregated bandwidth; thousands of
parallel functions compensate their limited individual network bandwidth. This
is sometimes not enough or simply too expensive, thus some works optimize the
number of data partitions and workers to explore a performance to cost tradeoff.
Another solution for certain applications is to simply replace the storage for a
faster one. For example, using an in-memory store to relay information between
functions instead of slower object stores or combine them intelligently to achieve
a better cost-performance relation. In the end, however, these solutions still

26 Chapter 2. State of the Art

follow a data-shipping architecture and, even after optimization, are hindered
by the problems it creates. Importantly, huge data transfers thwart application
performance and can quickly become economically expensive.

For this reason, some projects especially tackle the issues of data-shipping and
aim to minimize its effects. Most of these works try to merge a FaaS platform
with a storage system either way. As we have seen in our review of active storage
research, a complete combination of compute and storage is unadvised [46, 148].
Such an approach creates interferences and contention between both elements,
which is of special relevance in multi-tenant services. Furthermore, it thwarts
system elasticity, since storage and compute typically undergo very different de-
mand from applications. A better approach is to decouple computation within
the storage and manage them separately while still keeping them close.

Precisely, traditional active storage systems are built on top of object storage.
In these solutions, computation scales with the storage in a sub-optimal way.
Object stores handle persistent data and, consequently, the process of scaling them
is heavy. This does not match with the quickly changing demand of ephemeral
computation that is necessary to process data in data processing workloads.

Moreover, serverless functions generate extra intermediate data due to their
lack of direct communication. This hinders computational stages that require
caching data or simple aggregations with multiple, expensive data transfers. Tra-
ditional active storage typically implements stateless data processors that execute
in the data path. This model is not enough to resolve these situations, which
would require stateful computational elements.

This situation sets up our third research question, where we ask for a solution
that reduces the effects of the data-shipping model but does not hinder the prop-
erties and performance of serverless functions and storage. In sum, there is no
current solution to counteract serverless data-shipping for large temporary data.

Chapter 3

Studying Parallelism in FaaS

A myriad of work has explored Function-as-a-Service (FaaS) for highly-parallel
computing jobs. However, are FaaS platforms a good fit for parallel computation?
Most of the literature focuses on specific platforms and convey that their ideas
can be extrapolated to any other. However, not all FaaS systems follow the same
architecture and none detail specific targets towards such kind of applications.

In this chapter, we explore the architectures of four cloud FaaS offerings with
special emphasis on parallel performance and conclude that not all of them pro-
vide the necessary means to host highly parallel applications. We validate these
findings with an extensive empirical experiment.

The results of this chapter have been published in an article [31].

28 Chapter 3. Studying Parallelism in FaaS

3.1 Introduction
Function-as-a-Service (FaaS) has picked the interest of many applications due to
its simplicity. One of such applications is highly parallel computing jobs. Elastic
scale and on-demand resource availability look like a good substrate to run em-
barrassingly parallel tasks at scale. Consequently, it motivated the appearance
of several research and industry projects that adopt FaaS to run highly parallel
jobs. On a first take, the “Occupy the cloud” [98] and ExCamera papers [65]
demonstrated inspiring results from using FaaS for data analytics applications.
On their basis, several works [35, 64, 141, 157] evolved on the idea of running
compute-intensive parallel workloads on cloud functions and showed interesting
results against traditional IaaS cluster computation. Some of the literature [67,
83, 99] analyzes these efforts and focuses on the challenges and viability to run
data analytics workloads on FaaS platforms. Their conclusions show enticing
results despite some issues. E.g., they discuss open challenges such as cost effi-
ciency and statefulness. In sum, they convey that FaaS platforms are a good fit
for data-processing parallel applications [98].

3.1.1 Scope and challenges

In parallel computing, many compute-intensive tasks or processes are executed
simultaneously. Simultaneity is important since these tasks usually collaborate.
Data analytics jobs, linear algebra, and iterative machine learning training algo-
rithms are some examples. This requires a set of very specific properties in terms
of resources, scale, and latency that allow to run all tasks at the same time with-
out interleaving for compelling performance. Indeed, the information presented
on the above papers shows that parallel applications on FaaS only make sense
when the platform provides the necessary properties to enable their parallelism.
However, they do not investigate them.

Simple function concurrency is not enough if each function invocation does
not get its full isolated resources (we refer to each unit of resources as function
instance). Otherwise, computation faces throttling and resource interference and
becomes too slow and expensive compared to traditional clusters. In fact, most
works on parallel computing atop FaaS presuppose that function invocations will
run simultaneously, each on isolated resources [35, 65, 98, 141]. Consequently, the
FaaS service must be able to provide enough resources at low enough latency to
run all invocations in parallel.

However, all the aforementioned works base their arguments exclusively on the
performance of AWS Lambda. While AWS seems to provide compelling values

3.1. Introduction 29

for the discussed properties [98, 113], they are not included in the simple FaaS
definition of cloud functions that we presented above [51]. The properties are, in
fact, particular of each implementation of the FaaS model and usually detailed
on each platform’s documentation. Still, cloud-offered FaaS platforms do not
guarantee any of them: there are no service-level agreements (SLA) for these
properties. More so, while function resources, timeouts, or even concurrency are
clearly described by every platform, parallelism is not carefully addressed by any
of them.

This raises an important question: do current FaaS platforms fit parallel
computations? And also: what makes some FaaS platform a better fit for
parallel applications than the others? Several benchmarking works [32, 113, 127,
177] compare different FaaS platforms. These papers indicate that indeed not all
services provide the same properties. Unfortunately, existing literature approaches
FaaS platforms from a high-level user perspective. They tackle use cases that
resemble the I/O-bound, reactive applications FaaS is prepared for, and focus on
properties such as latency, cold start, cost, and configuration capabilities. Some
go beyond and explore elasticity. However, they tackle it as the ability to quickly
handle dynamic workloads and disregard actual parallelism and the implications
of the FaaS platform architecture. While this methodology is logical due to the
black-box nature of the platforms, it does not allow to evaluate their suitability
for highly parallel, compute-intensive applications. Indeed, understanding why
each platform behaves as it does when they deal with parallelism requires a deeper
knowledge of their architecture. And existing literature does not provide a detailed
view of the architectures and management approaches of each platform, neither
any of them tackle parallel computations in detail.

3.1.2 Contributions

To address the above challenges, in this chapter we carefully investigate the par-
allel performance of the four major cloud FaaS platforms. Namely, we analyze the
architecture and performance of AWS Lambda (AWS), Azure Functions (Azure),
Google Cloud Functions (GCP), and IBM Cloud Functions (IBM). We especially
focus on details that would affect the ability of the services to provide a good
substrate for highly parallel computations. First, we describe and analyze the
design of each service based on available information. We are interested in how
functions are managed, the virtualization technology used, how invocations are
scheduled and their approach to scale, the management of resources, and other
components that directly affect parallelism. To organize all these traits, we build
a comparative framework that helps the description and posterior discussion on

30 Chapter 3. Studying Parallelism in FaaS

the differences between platforms. Second, we perform an experiment that allows
to clearly visualize the parallelism of executions in a FaaS platform.1 The ex-
periment runs a job split into several function invocations (tasks) and produces
plots with their execution timeline, drawing a complete view of the parallelism
achieved. Combined with the information from their architectures, this visualiza-
tion allows us to understand when new resources (function instances) are allocated
to process function invocations, and whether resources are used simultaneously to
handle different invocations in parallel. We can also see if this scheduling and re-
source management affects the performance of parallel tasks, such as by throttling
invocations or by sharing resources across invocations (interleaving them).

Our objective is hence to understand their performance, and be able to spot
bottlenecks, limitations, and other issues that can severely influence applications.
In sum, we want to categorize characteristics of each service that must be con-
sidered and may help users understand the different platforms to choose the one
that better fits their needs.

This chapter describes the following contributions:

• We present a detailed architectural analysis of the four major FaaS plat-
forms: AWS Lambda, Azure Functions, Google Cloud Functions, and IBM
Cloud Functions. We categorize their design through a comparative frame-
work with special focus on parallelism. Two traits importantly influence
parallelism of the platforms: virtualization technology and scheduling ap-
proach.

• We perform a detailed experiment to reveal invocation scheduling and paral-
lelism on each platform. The experiment consists in running several function
invocations concurrently and gather as much information as possible to draw
a comprehensive timeline of the execution. This visualizes the parallelism
achieved and reveals issues.

• We analyze the information gathered for the different platforms and their
affinity to parallel computations. Generally, lighter virtualization technolo-
gies and proactive scheduling improve parallelism thanks to faster elasticity
and finer resource allocation. Thus, platforms like AWS and IBM resolve
parallel computations more satisfactorily than Azure, where our experiment
only reaches a parallel degree of 11%.

1The experiment code and results for all platforms, including extra plots, are accessible at
https://github.com/danielBCN/faas-parallelism-benchmark.

https://github.com/danielBCN/faas-parallelism-benchmark

3.2. Architecture analysis 31

Invocation
Sources

Create/remove
instances

Distribute
invocations

Receive
invocations

Scale
Controller

Invocation
Controller

Function Instance

Invocation

Figure 3.1: Abstract FaaS architecture.

3.2 Architecture analysis
In this section we describe the architecture of each FaaS platform. For an easy
comprehension of the differences between services, we first create a comparative
framework. We use it to outline the general organization, configuration possibili-
ties, and documented limitations, and we put them in context with a description
of their deployment model. Our interest is specially focused on resource provi-
sioning and scalability to meet on-demand requests. Thus, we make emphasis on
work distribution in terms of concurrency and parallelism. The descriptions on
this section are all based on official information available online, unless indicated
otherwise.

Figure 3.1 shows an abstract FaaS architecture with the main components we
analyze in this section: function instances and invocations, the scale controller,
the invocation controller, and invocation sources. We draw this schema based on
open-source platforms and the literature [4, 133, 155, 173].

There is an important distinction in a FaaS platform: function invocations
and function instances. Invocations are each one of the function executions in
response to a request. Instances refer to the resource units that are provided to
run invocations. If two function invocations are run on the same resource entity,
we consider they run on the same function instance. This can happen by reusing a
container, or by running several invocations in the same VM. While an invocation
is easily identified on all platforms, each service manages instances differently. As
we will see, function instances are usually determined by the virtualization used
on each architecture.

32 Chapter 3. Studying Parallelism in FaaS

The scale controller represents the logic that decides when to create or remove
instances. The invocation controller is the logic that decides where to run each
invocation that comes from invocation sources. In practice, these components
may be merged into a single one; or be part of another component.

3.2.1 Comparative framework

For a handy comparison between FaaS platforms, we design a comparative frame-
work to collect the most relevant characteristics of each one. It explores two items:
(1) the general model of function deployment and management, and (2) the ar-
chitectural approach to scale and resource management. Our focus is specially
on the second one, since it conditions scalability and parallelism for each service,
while the first provides important context. In this sense, we expand the second
item by reviewing the following six traits:

Technology. In this category we discuss the virtualization technology used to
build function instances. Instances need to be isolated resource units to provide
multi-tenant properties. This is usually achieved with virtualization, but the
chosen technology is very important for the design of a FaaS platform. Traditional
VMs are heavier than containers, what makes the latter better for the irregular,
low-latency FaaS scaling. But we also have microVMs, light as containers but
with kernel-based virtualization. Some providers may combine technologies to
efficiently handle isolation and performance.

Approach. This category analyzes the job of the invocation controller logic, i.e.
the scheduling approach used to distribute work (invocations) across resources
(instances). In particular, we categorize two kinds: push-based and pull-based.
We refer as push-based to architectures that follow a proactive policy where a
control plane takes the role of the invocation controller: the controller pushes
invocations to instances. A pull-based architecture is more loose and reactive; the
invocation controller logic is delegated to instances, which obtain work from the
event sources: instances pull invocations from queues.

Scaling. This describes the scale controller. The scheduling approach heavily
influences this component: push-based architectures usually merge the scale and
invocation controller logic to balance load on demand, while pull-based ones use
a dedicated scale controller to manage the instance pool. Here we also focus on
the decisions of this component. For example, when does the controller create or
remove instances?

Resources. Most platforms let users configure the resources that each function
gets. We determine the minimum guaranteed resources for a single invocation with

3.2. Architecture analysis 33

Control Plane

Management
APIs

Integration
with other
services

AWS SDK Load Balancer

Data Plane

Invoke Service

Sync invocations

Event invocations

Lambda Worker (EC2)

...Execution
Environment

(instance)

Invocation

microVM

Execution
Environment

(instance)

Invocation

microVM

OS + KVM

Figure 3.2: AWS Lambda architecture.

a particular function configuration. This is a product of the platform architecture
and the tuning set by the provider. On one hand, how an architecture manages
resources may introduce interferences across invocations. On the other hand, the
service provider may set up some limits on the system that affect this category.
For instance, resources could be restricted to ensure the proper functioning of the
system or the economic viability of the service.

Parallelism. This category analyzes all information relative to function concur-
rency and parallelism. Particularly, we want to quantify the maximum amount of
parallelism that a platform can achieve. It is important to remember that this is
just an imposed limit, and the service does not guarantee (through an SLA) to
reach such parallelism.

Rate limits. Providers protect their systems with use rates that block excessive
request bursts and can limit parallelism. We illustrate it with the number of
invocations per second the system accepts, but also discuss other limits related to
parallelism.

3.2.2 Architecture of AWS Lambda

All AWS Lambda specification, configuration, and limitations are described in its
documentation [10, 16]. Additionally, a recent AWS whitepaper [19] sketches its
internals with more detail. An architecture overview is depicted in Figure 3.2.
The service is split into the Control and Data planes. The Control plane handles

34 Chapter 3. Studying Parallelism in FaaS

the management API, such as creating or updating functions, and also includes
integrations with other cloud services (e.g., forwarding S3 events or polling SQS
queues). The Data plane manages resources and function invocations. The Invoke
service is the main control component taking the logic of the invocation and scale
controllers. Event-triggered invocations go directly to the Invoke, where they may
be queued; synchronous invocations, which need extra management to respond to
callers, are handled by a load balancer.

Function deployment

In AWS Lambda, the user deploys functions individually. The Management API
enables function creation and configuration (e.g., runtime and memory). The
function code is uploaded to the service in compressed packages and the configu-
ration is updated with HTTP requests. Functions may be invoked with an HTTP
request, but the usual approach is to bind them to function triggers. Triggers set
up links with other cloud services that produce events and allow enabling invoca-
tions in response to those events. Configuration includes other features, such as
limiting function concurrency and pre-provisioning resources.

Resources and scale

Technology. Lambda uses several virtualization levels in its architecture [19] (see
Figure 3.2). The general structure changed recently with Firecracker [2], which
enhances performance and management. We focus on the new model. The first
level contains Lambda Workers, which are metal EC2 machines running a Fire-
cracker hypervisor. This technology allows to populate Lambda Workers with
microVMs that are quick to spawn and provide strong isolation. MicroVMs draw
tenant boundaries, being each of them exclusive to a user. Within a microVM,
the service creates execution environments to run the invocations. Execution en-
vironments are the function instances, created with the help of cgroups and other
container technologies. Each of them is created especially for a function deploy-
ment, containing the appropriate runtime and function code, and can be reused for
subsequent invocations. MicroVMs are not tied to a single function deployment
and may hold several execution environments of the same user. With Firecracker,
each microVM only contains a single execution environment at a time.

Approach. An official AWS whitepaper [19] depicts Lambda following a push-
based scheduler. The Invoke service proactively designates the instance for each
invocation. Upon a request, this component creates an execution environment
(instance) inside a microVM or chooses an existing idle one. To perform such

3.2. Architecture analysis 35

decision, this component must monitor all system resources. Then, the service
pushes the invocation payload to the instance, where it is run.

Scaling. The Invoke service controls the scale at a multi-tenant level. It identifies
the instance for each invocation among the cluster of Lambda Workers, which
is common for all users. Since multi-tenancy is achieved at microVM level, the
service can easily fill Lambda Workers. If the user performing a new invocation
has no microVM available, the Invoke service finds the resources for a new one in
the cluster. If there is already a microVM running, it can be reused for two cases:
the existing execution environment is for the same function that is being invoked
(and it is simply unfrozen and run with the new payload), or it is for another
function (and a new container is created).

Resources. Users configure function memory from 128 MiB to 10 GiB. Then,
instances will grant exactly that much memory for each invocation. To achieve
so, a function instance only processes one invocation concurrently. With memory,
Lambda scales other resources proportionally. In particular, 1792 MiB corre-
sponds to the equivalent to one vCPU [10].

Parallelism. The service imposes a limit of 1000 concurrent executions per user—
which can be increased under request [16]. Since there is no per-instance concur-
rency, the achievable parallelism shares this limit.

Rate limits. The request per second rate is very ample: 10 times the concur-
rent executions limit for synchronous and unlimited for asynchronous invocations.
However, instance creation is controlled by a burst limit [15]. Depending on the
region, the service creates from 500 to 3000 instances without any limitation in
a burst phase. Reached that point, the number of instances created is limited to
500 each minute.

3.2.3 Architecture of Azure Functions

An architecture overview of Azure Functions is shown in Figure 3.3. A description
of it is available in its documentation [28]. In the service, a set of function instances
run invocations in response to events from different sources. The scale of this set
is regulated by a long-running component that monitors the state of the service:
the Scale Controller.

Function deployment

In Azure Functions, a Function App is the general unit of management and de-
ployment. Each Function App works as a bundle that may contain many function

36 Chapter 3. Studying Parallelism in FaaS

E
ve

nt
 S

ou
rc

es
Create instance

Monitor Events

Monitor Usage

Process Invocations

Scale Controller

Function Instance
1.5 GB, 1 CPU

...

Invocation

Invocation

Figure 3.3: Azure Functions architecture.

definitions and manages a pool of resources (function instances). The application
package the user uploads includes their code, dependencies, and configuration.
Each function definition is a piece of code correctly annotated as an Azure Func-
tion. The next part of configuration is function triggers and bindings, which define
the events that will result in function invocations and enable functions to operate
input and output streams. Advanced configuration parameters allow to tune some
extra features.

Resources and scale

Technology. Azure Functions is built atop Azure WebJobs, a Web App PaaS ser-
vice that auto-scales a VM cluster based on load. Function instances are therefore
VM hosts with fixed resources and the whole Function App deployment package
installed. The set of instances is managed by Azure WebJobs within each Func-
tion App. Differently from all other platforms, Azure uses Windows hosts by
default, instead of Linux.

Approach. The documentation of Azure Functions depicts a pull-based scheduling
approach [28]. Function instances poll event sources to process function invoca-
tions. When an instance finds an unprocessed request in one of its bound triggers,
it runs it. An instance can run any function definition in the Function App and
several invocations may be taken by the same instance concurrently. This means
that different invocations (same Function App) may share resources.

3.2. Architecture analysis 37

Scaling. The Scale Controller manages the number of Function Instances in a
Function App. This component monitors the event rates and instance usage
to determine when to create or remove VMs. The actions of this manager are
dictated by a set of internal policies. For example, it only creates one instance
per second if invocations are by HTTP request [28].

Resources. The available resources on each instance depend on the plan the Func-
tion App is deployed on: Consumption plan or Premium plan [28]. We focus on
the Consumption plan since it is the serverless one. It presents the typical FaaS
properties of fine-grained pay-per-use and scale to zero. But differently from other
platforms, resources are not configurable, and all instances have 1.5 GiB of mem-
ory and one CPU. This means that an invocation may get at most these resources.
Remember that each instance may take several invocations concurrently, so there
are no guaranteed resources for each invocation. The Premium plan allows in-
creased performance by pre-provisioning resources. The user defines a lower and
upper limit to the number of instances, that do not scale to zero.

Parallelism. The documentation of Azure Functions depicts the service clearly
not focused on parallelism. The number of instances per Function App is limited
to 200 and cannot be increased [28]. However, it seems to be built for small
I/O-bound tasks that benefit from concurrency. A single instance may choose
to fetch several invocations from the event sources at the same time, allowing
unlimited invocation concurrency by sharing instance resources, a good fit for
I/O operations. The actual parallelism is thus limited to the number of instances
since they only have one CPU each. To avoid resource interference, a necessity
for compute-heavy tasks, concurrency can be configured by the user by setting a
per instance limit [27]. There is a different limit for each trigger type, and they
are managed by the instances autonomously. For example, HTTP requests have
a default limit of 100 concurrent invocations per instance, which, after scaling to
the maximum 200 instances, could offer 20K concurrent invocations. This does
not improve parallelism.

Rate limits. There is no service limit on the number of invocations processed per
second. It depends on the functions themselves (user code) and how many of
them the available instances can process following the service polices (at which
rate they pull from queues). Note that there is a limit on the instance creation
rate: one per second based on HTTP trigger load, and one every 30 seconds for
other triggers [28].

38 Chapter 3. Studying Parallelism in FaaS

3.2.4 Architecture of Google Cloud Functions

The general concepts of the architecture of Google Cloud Functions are detailed
in its documentation [75]. However, it does not specify its internal components
with clarity, such as which component runs the invocation and scale control logic.
Consequently, we do not present an overview scheme for this platform. This
only affects the scheduling approach and scaling categories of our comparative
framework. The documentation gives enough information for the other categories.

Function deployment

In Google’s FaaS, the unit of deployment is a single function. The system manages
each function separately, even if deployed on the same package, and scales them
individually. To deploy a function, the CLI uploads the code directory and detects
functions based on project structure conventions. The configuration is updated
through HTTP calls to the service API. Functions may always be invoked with
HTTP requests, but the user may also associate them with triggers to generate
invocations in response to events from other services.

Resources and scale

Technology. To isolate executions across tenants, Google Cloud Functions uses
gVisor microVMs [76]. gVisor [9] is a kernel-based virtualization tool used to
securely sandbox containers. These containers are the function instances that run
user code, taking only one invocation at a time [75]. MicroVMs allow to strongly
isolate real resources between tenants; however, there is no information about how
many containers can be packed in the same microVM or how the service ensures
each of them has the resources configured for the function.

Approach. There is no information available about the internals of the service that
enables us to make any detailed evaluation of its scheduling policy. Documentation
points to a push-based approach [75], where a controlling component manages
invocations and scale.

Scaling. Following the previous category, we sketch the existence of a controller
component in the system that collects system information and decides when to
scale in or out. The reasons behind scaling decisions are listed in the documen-
tation [78] and include the usual running time (short functions scale more), the
cold start time, the rate limits of the service, function error rates, and the load of
the servers at the time.

3.2. Architecture analysis 39

Resources. Users configure memory for their functions. The service offers 5 possi-
ble sizes from 128 MiB to 2 GiB and assigns CPU therefrom [77]. Note that this
relation is not proportional: for instance, 256 MiB functions are given 400 MHz of
CPU, while 2 GiB, 2.4 GHz. The documentation states this numbers as approx-
imations and not guaranteed resources. Thus, we expand this information with
a simple exploratory work. Inspecting system information (/proc), we see that
all containers run in VMs with 2 GiB of memory and 2 CPUs at 2.3 or 2.7 GHz.
This happens irrespective of the function configuration, which tells us that all mi-
croVMs are equally sized. Again, it is unknown if different containers are packed
in the same VM.

Parallelism. There is no limit on invocation concurrency for functions called with
HTTP requests [78]. Event-triggered invocations are limited to 1000 concurrent
executions per function (not increasable). Advanced configuration also allows
users to limit the number of concurrent instances. Since each instance only al-
lows one invocation at a time, parallelism is also bound by these limits. Thus,
maximum parallelism is unbound for HTTP-triggered functions.

Rate limits. Google Cloud Functions sets a per region limit of 100M function
invocations per 100 seconds [78]. Additionally, the CPU usage is limited by other
rates. These quotas are fairly generous for the majority of applications.

3.2.5 Architecture of IBM Cloud Functions

IBM Cloud Functions is a cloud-managed Apache OpenWhisk [4] deployment, an
open-source FaaS started by IBM and donated to the Apache Software Founda-
tion. Its design is expounded in both documentations [90]. Figure 3.4 overviews
the platform, with four main components: the Controller acts as a load balancer
and manages instance resources; the Invoker machines are VMs that run several
containers (the function instances, usually Docker); a Kafka deployment commu-
nicates them at scale; and a database (CouchDB) stores function information,
request data (payload and results), and logs.

Function deployment

In IBM Cloud, functions are called “Actions” and deployed individually to the
service. Actions must be contained in a namespace, which belongs to a resource
group, and may be organized in packages. Action definitions (code and config-
uration) are registered in the database through the Controller, that exposes an
HTTP API. Like Actions, the user defines Triggers and Rules. Triggers identify

40 Chapter 3. Studying Parallelism in FaaS

Invoker

...Docker Instance

Invocation

Docker Instance

Invocation

Controller
Load Balancer

Store result

Send request to Invoker

Authorization
Function Definition

Figure 3.4: IBM Cloud Functions (OpenWhisk) architecture.

event sources to monitor, while Rules are event filters to map Triggers to Actions.
Actions can always be invoked directly with HTTP requests.

Resources and scale

Technology. Function instances are containers that are run on a cluster of Invoker
machines, which are VMs. Each Invoker manages its local pool of containers,
while the Controller is responsible for the pool of Invoker machines. Thus, IBM’s
FaaS platform has two levels of virtualization that we can analyze.

Approach. OpenWhisk follows a push-based scheduling approach [90]. The in-
vocation control logic is split between two components. The Controller, upon a
request, forwards it to a designated Invoker machine. The Invoker then creates
or reuses an idle container (instance) to run it. This one-to-one communication is
performed asynchronously through Kafka. The Controller acts as a load balancer
while monitoring the state of all Invoker VMs. Thus, the Controller proactively
pushes function invocations to the instances that run them.

Scaling. The scale control logic is also split. Each Invoker machine locally manages
its containers. With a fixed set of memory assignable to containers on the machine
and the functions’ memory configuration, the Invoker responds to requests by

3.2. Architecture analysis 41

creating containers with the right resources and informs the Controller of its usage
levels. The Controller manages the general pool of Invokers and sends requests
to them prioritizing the ones that already have warm, but idle, containers. If
none is available, it chooses one Invoker with enough free resources to create a
new instance. There is no information on when or how Invokers are created or
removed, or if the set is fixed.

Resources. Users configure function memory, and each instance provides those re-
sources to each invocation. The service does not ensure any CPU resources for a
given memory, but it claims to scale resources proportionally. To collect more spe-
cific information, we empirically study the platform (more details in Section 3.7.2).
Inspecting system information (/proc) we see that all explored machines (Invok-
ers) run 4-core CPUs and 16 GiB of RAM. However, in our experiments, a single
Invoker seems to dedicate only up to 8 GiB for container hosting. If resources
scale proportionally, this CPU-memory relation tells us that we could ensure a
full CPU core with 2 GiB functions.

Parallelism. The service has a limit of 1000 executing or queued concurrent invo-
cations per namespace—increasable under request [91]. Each instance only takes
one invocation at a time, meaning that the maximum parallelism of the plat-
form is the same as this imposed limit. In fact, OpenWhisk offers a configuration
parameter to manage per-instance concurrency [7], with which a single instance
could take several invocations at the same time (unavailable on the IBM Cloud).
While this increases concurrency, it does not improve parallelism.

Rate limits. No more than 5000 invocations can be submitted per namespace
per minute—also increasable [91]. It does not directly affect parallelism, since
the concurrency limit is smaller. However, for applications that run many small
tasks, it can be easy to reach. Examples are parallel computations with dynamic
load balancing and consecutive batches of tiny tasks.

3.2.6 Architecture summary

Table 3.1 summarizes all traits collected for the four FaaS platforms. They are all
obtained directly from their documentation and official publications as of October
2020. The exceptions are Google’s scheduling approach and scaling, which are
not clearly described; and the guaranteed resources at IBM, which we empirically
assess in next sections. Let us review these traits next:

Technology. Each provider uses a different virtualization technology. AWS and
Google use several virtualization levels and include microVMs. This allows finer
resource management with small start-up times and increased security. IBM also

42 Chapter 3. Studying Parallelism in FaaS

Table 3.1: Traits of FaaS platforms (as of October 2020). See Section 3.2.1 for trait
descriptions.

Technology Approach Scaling
AWS microVM push-based Control plane
Azure VM pull-based Scale Controller
GCP microVM push-based Controller
IBM VM + Container push-based Controller

Resources Parallelism Rate limit
AWS 1792 MiB = 1 CPU (ext.) 1000 3000 + 500/min
Azure 1 CPU2 200 unbound
GCP 2 GiB = 2.4 GHz unbound 100M/100 s
IBM 2 GiB = 1 CPU (ext.) 1000 5000/min

has several virtualization levels, but does not use microVMs. Consequently, packs
of containers run on each VM, requiring a different approach to security. Azure
only has one level of virtualization, simplifying resource management at the cost
of elasticity. In sum, the schema of virtualization technologies is really important
for the architecture, as it influences several factors that must be considered for
scheduling and managing the service, e.g., security and the time it takes to start
an instance.

Approach. Only Azure clearly uses a pull-based approach to scheduling work. The
other providers build push-based architectures that create instances more eagerly.
This benefits parallelism, as they are faster to create instances. From the table,
the scheduling approach seems tightly related to the virtualization technologies
used. Azure manages a single VMs level and takes a conservative approach to
scale. Meanwhile, the others use lighter technologies and spawn instances with
more liberty.

Scaling. There is always a controlling component that manages scale in the sys-
tem. In push-based platforms, scale and invocation distribution logics are dealt
by the same control component. In the pull-based, the controller manages scale
based on the state of the system but does not deal with invocations.

Resources. Instances usually have fixed resources, based on function configuration.
Most providers let users configure function memory and scale other resources, like

2In Azure, a single invocation enjoys a full CPU only with instance concurrency limited to
one (see Section 3.2.3).

3.3. Experiment methodology 43

CPU, proportionally. Azure does not allow configuring resources but monitors
usage during execution to adjust billing [26]. Even with their different configura-
tion options, all providers offer at least 1 vCPU with around 2 GiB of memory.
They allow users to ensure certain amounts of resources.

Parallelism. The achievable parallelism is quite good for AWS, GCP and IBM,
with generous limits on concurrency. Azure, however, has restricted parallelism
due to its scheduling approach, strict limits, and system tuning.

Rate limit. Invocation rate limits do not generally restrict parallelism in any
platform. 5000 invocations per minute at IBM is the most restrictive; but it can
be increased under request.

This section provides a summary of the four platforms and several aspects that
heavily affect the parallelism they offer. Combined with some reasoning, we can
start to shape our expectations for the different services. However, none of them
guarantee these properties through an SLA. For example, the instance resources
described in the documentation should be taken as approximations and the max-
imum parallelism as just an upper limit. For this reason, we empirically assess
these properties in the next sections.

3.3 Experiment methodology
We explore the different architectures by empirically evaluating a real parallel
workload. For this, we design an experiment to show how multiple simultaneous
function invocations are distributed across instances. This validates the perfor-
mance of parallel tasks on each FaaS platform.

The general methodology consists in running many concurrent requests to a
function while gathering execution information. We use this information to draw
an execution chart. In particular, we plot parallelism clearly by depicting the
invocations on a timeline that identifies function instances.

This section starts by setting up a set of questions that motivate the exper-
iment. Followed by a description of the test function and its different configu-
rations, including a big scale setup. We discuss several considerations regarding
the execution of this evaluation and define a common notation for the experiment
parameters. Then, we present a set of metrics that characterize each platform for
parallel computations. The section ends with the description of the plot resulting
from the experiment.

44 Chapter 3. Studying Parallelism in FaaS

3.3.1 Questions for discussion

The benchmark is designed with the following questions in mind, which define our
goals for evaluation. We analyze them on a per-platform basis through Sections 3.4
to 3.7.

Q1 Does the service scale function instances elastically to fit parallel tasks? Re-
lated to the technology and scheduling approach of each platform, this question
validates if the design is useful to reach parallelism in practice. In essence, do
concurrent invocations actually get different instances? Coincidentally, we also
identify the maximum parallelism achieved in practice, in contrast to the upper
bound described before.

Q2 Does the service ensure instance resources so that there is no interference
across function invocations? This question validates the actual resources gotten
on each platform and if there are any issues, such as resource interference, when
running a parallel workload. The objective is to verify the information about
instance resources from the documentation (Section 3.2).

Q3 What can we deduce from the scheduling of the system and its general per-
formance? This last question embraces general information that can be learned
from the experiments. Including: invocation latency and how it changes with
scale; possible performance issues; tendencies in cold starts; insights on internal
policies and tuning for resource management and scheduling; and any other useful
information.

3.3.2 Function definition

The questions above determine the information that we need to collect in our ex-
periments. Next, we detail the definition of the function that will run our bench-
mark to collect that data on the different FaaS platforms. The function has two
jobs: gathering information and performing work. We obtain as much execution
information as possible for each platform, which means different code and result-
ing plots. Nonetheless, there are three basic items that we require: (1) client-side
execution times for each invocation, (2) intra-function execution times (actual
invocation duration), and (3) function instance identification. Client-side times
can be acquired irrespective of the platform. However, the other two items may
be obtained differently on each service. Function instance identifiers are never
exposed by the services, and we use different techniques to obtain them (detailed

3.3. Experiment methodology 45

Table 3.2: Function configuration for the different platforms.

Memory (MiB) CPU Region
AWS 256, 2048 1/7, 8/7 CPU us-east-1
Azure 1536 1 CPU France Central
GCP 256, 2048 0.4, 2.4 GHz us-central1
IBM 256, 2048 1/8, 1 CPU Washington DC

on their respective sections). We complement the data by inspecting /proc when
available, since it can offer valuable information about the virtualization level and
system configuration. Extended discussion on how to obtain execution informa-
tion can be found in the literature [122, 177].

As for workload, we experiment with two kinds of tasks: a simple sleep and a
compute-intensive job. The sleep is a baseline to explore the scheduling pattern
of the service. We use a 1-second sleep, which is enough to plot a comprehensive
timeline, while longer tasks could complicate the information due to concurrency.
The compute task is intended to mimic a real embarrassingly parallel workload
and reveal issues with resource availability and interference. For easy reasoning,
this task has a clearly defined time duration. In particular, we run a Monte
Carlo simulation where an invocation performs 𝑥 iterations to approximate 𝜋 . 𝑥

is configured and evaluated to represent a consistent amount of time, close to 1
second.

In detail, the function does the following: (1) get the current time, (2) identify
invocation and instance, (3) perform the workload, (4) get the current time, and
(5) return the collected data. We obtain the initial time right from the start to
represent when user code starts to run in the cloud. We checked that the overhead
of the second step is consistent across invocations and not significant against the
actual workload under test.

The invocations are run with a Python script that performs synchronous
HTTP requests concurrently with the asyncio module. We use the httpx client
with the authentication methods required by each platform. For AWS, we use the
aiobotocore client: a simple wrapper for signed HTTP calls. The information
collected is complemented with client-side data and appended to a file, that is
later used to draw the execution plot.

3.3.3 Function configuration

Table 3.2 summarizes the function configuration parameters for each platform.
The default timeouts on all platforms are enough for our one-second functions

46 Chapter 3. Studying Parallelism in FaaS

Table 3.3: Compute-intensive task on each platform.

Runtime Iterations 2048 MiB 256 MiB
AWS Python 5M 1.1 s 7.7 s
Azure C♯ 20M 1.2 s (1.5 GiB)4

GCP Python 5M 1.3 s 3.5 s5

IBM Python 5M 1.3 s 1.3 s6

(5 min on Azure and 1 on the others). We test two memory configurations to
assess performance and resource management for different function sizes. One
(big – 2048 MiB) intends to reach a full CPU on all platforms; the other (small –
256 MiB) is small enough to reveal the scheduling of the system.3 In Table 3.2,
we include the presumed CPU for each platform and memory configuration; re-
fer to Section 3.2 for details on memory and CPU mapping. Regions are chosen
based on what they offer (availability zones, better network, more services, etc.)
to ensure best function performance and parallelism. Different regions may affect
request latency, but not the service parallelism we analyze. The function is writ-
ten in Python for all platforms but Azure (C♯), whose support for the language
was in preview during the experiments. This does not affect the benchmark since
we execute 1 second of computation on all platforms either way. To that end,
the compute-bound task performs 5M iterations on Python and 20M on C♯. See
Table 3.3 for a complete relation of task duration on each platform and config-
uration. While different languages may affect cold start time, configuration is
consistent for each execution and the parallelism in the plots is unaffected. We
take this into consideration when comparing across platforms. All functions are
triggered by HTTP requests and have logs and monitoring services active.

3.3.4 On a bigger scale

We want to confirm our conclusions by assessing large scale executions of the
benchmark. Our detailed plot (Section 3.3.7) becomes too noisy for analysis when
targeting such configurations. For this reason, we complement our results with an
extra execution of 1000 invocations that uses a simplified plot. This plot includes
the function execution time bars in a timeline together with a curve representing
the number of function instances running at each instant, showing the evolution

3This does not apply for Azure since resources cannot be configured.
4Since Azure does not allow resource configuration, we only show one time.
5Results from cold starts. Warm containers are slower. See Section 3.6.
6We discuss IBM’s equal performance for both configurations in Section 3.7.

3.3. Experiment methodology 47

of the experiment concurrency. In addition, we add a complementary histogram
of the invocation execution time that helps identify resource interference between
invocations.

With that many invocations, synchronous HTTP requests are inconvenient
for parallel executions, so we opt for asynchronous invocations instead. This
difference may result in different strategies for the platforms to scale resources
and we will keep this in mind when analyzing these executions. In any case, the
results are in line with the tendencies observed in the more detailed experiments,
which tells us that the invocation method may not affect parallel performance.

This experiment runs a CPU-intensive task. Specifically, each task computes
several matrix multiplication calculations that last around a minute in total. Func-
tion memory is fixed to 1024 MiB for each FaaS service. This implies that the
portion of CPU assigned to a function varies between cloud providers. The scale
is 1000 invocations of this task. This means that the same workload performed
on a single core would take approximately 16 hours. In this case, the use of asyn-
chronous triggers requires the result to be sent to the object storage available in
the cloud provider (e.g., S3 for AWS Lambda) and retrieved from the client after
completion. Note that the times displayed in the plot only represent the function
execution time and not the overhead produced in uploading the result to object
storage.

3.3.5 Experiment execution

The benchmark was run during May 2020 from a single client machine (a laptop
with a 4-core hyper-threaded CPU @2.6 GHz) invoking functions to the different
platforms. The consequent invocation latency reflects only in the time between the
client timestamp and the function start, and thus does not influence the display
of parallelism in the plots.

Executions were run during different days and hours. All configurations were
tested several times, and all showed similar results. The complex nature of the
plots (detailing a single execution to show its work distribution) makes it difficult
to show all the data in an aggregated format that is readable and informative.
Therefore, we selected some of the executions to give the reader the general idea
of the behavior of each platform.

The executions may find arbitrary numbers of warm and cold instances as
they are executed in succession. This is because warm starts depend on the
platform and its particular policies for recycling instances. Consequently, it is
not possible to ensure a consistent number of warm instances across executions.
However, we can collect this information afterwards and compare it with the

48 Chapter 3. Studying Parallelism in FaaS

number of instances available in the previous execution. Since we consider it
important for evaluating parallelism, we include data on the number of warm
starts experienced on each execution. For example, when running an execution
first with 10 invocations and then with 50, if the platform creates 10 instances for
the first run, the second one is expected to usually find 10 instances warm.

To account for all the different configurations and system state, we use a sim-
ple notation system throughout the evaluation to describe the complete setup of
each experiment. The notation is: 𝐼/𝑊 /𝑇 /𝑀. Where 𝐼 is the number of invoca-
tions in that experiment, 𝑊 is the expected number of warm instances staying
from a previous execution, 𝑇 is the workload type for the function (𝑆–sleep or
𝐶–compute), and 𝑀 is the memory size for the functions (𝑠–small or 𝑏–big, as
introduced above). For example, the notation 200/50/𝐶/𝑏 indicates an execution
with 200 invocations, expecting 50 warm instances, and performed the compute-
intensive task on big (2048 MiB) functions.

3.3.6 Metrics

To summarize the results of our benchmark, we establish the following metrics
that characterize the capabilities of the different FaaS platforms to host parallel
computations:

Cold start. Instance creation overhead is a direct result of the virtualization tech-
nology and the scheduling approach. Other benchmarks [127, 177] show that the
cold start depends on the function runtime configuration and analyze it in detail.
We do not consider our values for cross-platform comparison due to different la-
tencies to each cloud. Hence, we only point out general tendencies and its effects
to the system in its behavior.

Completion time. This is a good indicator of the achieved parallelism, and spe-
cially of the simultaneity of invocations. With this metric we quantify approxi-
mately how long it takes to run 200 big compute tasks on each platform. Each task
individually takes one second. Hence a perfect system would run any number of
this task within that second. However, platforms add overhead to the execution,
such as invocation delay.

Parallel degree. We define the parallel degree of a platform in an experiment as the
maximum number of instances used at the same time throughout the experiment.
We also include the percentage that this represents out of the total number of
invocations. We account this for the same setup as the previous metric, so 100%
parallelism means the use of 200 instances at the same time.

3.4. Experiment on Amazon Web Services 49

Failed requests. These are a hassle for parallelism, as they become stragglers,
need retrying, and heavily impact total computation time. With synchronous
invocations, like our case, the platform delegates retries to the caller, making the
process slower and increasing complexity for the user.

3.3.7 Plot description

The information gathered by all invocations in an experiment is represented in
a Gantt-like plot showing the execution period of each function invocation in a
global timeline of the run. Using different colors, the plot shows on which function
instance each invocation has run. This allows to see the real parallelism achieved
and spot concurrency problems (like per-instance concurrency or invocation throt-
tling).

In the plots, the horizontal axis is the timeline. Our time zero is the minimum
timestamp playing in the experiment: the first client invocation (red X). All other
times are deltas to this one. The vertical axis stacks the function invocations.
Each invocation is drawn as a horizontal bar indicating its timespan, i.e. the time
it has been running in the cloud. The yellow Xs indicate the client-side invocation
timestamp and the black ones, the request return. Bar colors differentiate the
instance where each invocation has been run. Although colors are limited to four,
since the plot groups invocations by instance, instances sharing a color are always
separated by instances with other colors, making the distinction clear.

3.4 Experiment on Amazon Web Services
We deploy and update our function with the AWS CLI. The invocation ID is
obtained through the function context object. The instance ID is the random
identifier present at /proc/self/cgroup, starting with sandbox-root [177].

3.4.1 Results

Experiments with sleeping functions We start with the small (256 MiB)
functions and the sleeping task. A first run with 10/0/𝑆/𝑠 shows how the system
creates a different container for each invocation, allowing full parallelism. A sub-
sequent execution with 50/10/𝑆/𝑠 results in Figure 3.5a. Note that the cold start
increases invocation latency by ≈ 200 ms. Still, the service achieves full paral-
lelism. Figure 3.5b shows 500/500/𝑆/𝑠; the service still creates different containers
for each invocation.

50 Chapter 3. Studying Parallelism in FaaS

0 500 1000 1500 2000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(a) 50/10/𝑆/𝑠

0 500 1000 1500 2000
Time (ms)

0

100

200

300

400

500

Fu
nc

tio
n

In
vo

ca
tio

n
(b) 500/500/𝑆/𝑠

0 2000 4000 6000 8000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(c) 50/10/𝐶/𝑠

0 2000 4000 6000 8000
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(d) 200/100/𝐶/𝑠

0 500 1000 1500 2000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(e) 50/10/𝐶/𝑏

0 500 1000 1500
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(f) 200/200/𝐶/𝑏

Figure 3.5: Experiment on AWS.

3.4. Experiment on Amazon Web Services 51

0 10 20 30 40 50 60 70 80
Time (s)

0

200

400

600

800

1000

Fu
nc

tio
n

In
vo

ca
tio

n

Concurrency

(a)

55 60 65 70
Function execution time (s)

0

100

200

300

#
Fu

nc
tio

n
in

vo
ca

tio
ns

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b)

Figure 3.6: Large-scale experiment on AWS.

Experiments with computing functions Still with small functions, we move
to the compute-intensive task. Running a single invocation, the computation
takes 7.7 seconds average with this configuration. Figures 3.5c and 3.5d show
subsequent invocations of this experiment with different parallelism. The variance
of execution time is within one second.

With the big functions, which have a full CPU, execution time for the individ-
ual run reduces to 1.1 seconds average. Figures 3.5e and 3.5f show the experiment
with different parallelism. Execution time is never far from the individual execu-
tion with a bit more variance than with the small configuration.

On a bigger scale Figure 3.6 shows the results of executing the larger config-
uration with 1000 parallel requests. Full parallelism is fulfilled even for big scale
executions on AWS Lambda. The histogram shows that all invocations do not
vary much from around 65 s run time, confirming resource homogeneity.

3.4.2 Discussion

Q1 All experiments show good parallelism, scaling rapidly to the number of
requests. The overhead is small, and all invocations run in different instances
at the same time. In particular, the experiment with 500 concurrent requests
shows that the server can keep dealing invocations at the pace the client is able to
create. Our larger configuration confirms that AWS Lambda scales to thousands
with asynchronous invocations [98].

52 Chapter 3. Studying Parallelism in FaaS

Q2 CPU resources scale with memory as documented [10]. Function perfor-
mance is constant with little variance (i.e., there is no interference). This suggests
that provisioning and isolation are strict, not only for memory but also for other
resources. We can clearly see this from the compute-intensive experiments. Our
task takes ≈ 1.1 s with the full CPU (big functions) and ≈ 7.7 s with the small
functions. Since a full CPU is reached at 1792 MiB, our 256 MiB functions are 7
times smaller and should have 1/7 of CPU. Accordingly, our small functions take
7 times more than the big ones.

Q3 The experiments also reveal these conclusions: (i) Scheduling allows gener-
ous resource allocation in burst. Containers are immediately created when none
are available. (ii) Instances are set up for processing quite fast, probably a result
of using a microVM technology. (iii) Even with cold starts, invocation latency is
usually below 300 ms, including client-cloud latency.

3.5 Experiment on Microsoft Azure
The development and deployment of Function Apps is managed with the Vi-
sual Studio Code extensions, as recommended in the documentation [23]. The
invocation ID is obtained through the function context object available as an
optional function parameter (inherited from WebJobs). For the instance ID, an
environment variable (“WEBSITE_INSTANCE_ID”) is present from Azure WebJobs
and identifies a function instance [29]. We also use Live Metrics, an Azure service
that shows real time detailed information for a Function App, such as the number
of active servers (instances), or CPU and memory usage, among others.

3.5.1 Results

Experiments with sleeping functions We start with the default configura-
tion and the sleeping task. A first execution with 50 parallel requests results in
Figure 3.7a, which shows a cold start. With this run, the service ends with 4
instances. A subsequent execution of the same experiment results in Figure 3.7b.
In this case, the 4 hosts were already running, and start processing invocations
right away. Figures 3.7c and 3.7d show the same experiment with 100 parallel
requests, both without previously running instances. They demonstrate that two
executions with the same parameters can be scaled differently in this platform.

Experiments with computing functions Now, we switch to the compute-
intensive tasks. Running 50 or 100 parallel requests do not get more than a single

3.5. Experiment on Microsoft Azure 53

0 5000 10000 15000 20000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(a) 50/0/𝑆/−

0 1000 2000 3000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n
(b) 50/4/𝑆/−

0 2000 4000 6000 8000 10000
Time (ms)

0

20

40

60

80

100

Fu
nc

tio
n

In
vo

ca
tio

n

(c) 100/0/𝑆/−

0 5000 10000 15000 20000 25000
Time (ms)

0

20

40

60

80

100

Fu
nc

tio
n

In
vo

ca
tio

n

(d) 100/0/𝑆/−

0 50000 100000 150000
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(e) 200/1/𝐶/−

0 10000 20000 30000 40000 50000
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(f) 200/4/𝐶/−

Figure 3.7: Experiment on Azure.

54 Chapter 3. Studying Parallelism in FaaS

0 10000 20000 30000 40000
Time (ms)

0

20

40

60

80

100

Fu
nc

tio
n

In
vo

ca
tio

n

(a) 100/4/𝐶/−

0 10000 20000 30000
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(b) 200/13/𝐶/−

Figure 3.8: Experiment on Azure with limited concurrency.

instance, thus we increase the workload. Repeating the same experiment (50 and
100 parallel requests) several times in quick succession does not alter results. We
then run 200 parallel requests, which results in Figure 3.7e. The system finally
creates new instances (up to 7 as confirmed with Live Metrics). Right away, we
run the experiment again, which we plot in Figure 3.7f. We see that requests only
run on 4 instances at first, but then scale out to 9. In this case, Live Metrics tells
us that the service created up to 12 servers, but some of them did not get any
work.

Limiting function invocation concurrency per instance Since the default
configuration is a bad fit for compute-intensive tasks, we run the experiments
limiting per-instance invocation concurrency as explained in Section 3.2.3.

Due to the CPU-intensive nature of our tasks, our experiment benefits from
limiting concurrency to 1 to avoid resource interference. Now invocations take
the expected time (≈ 1.2 s). In the previous executions, resource sharing was
extending execution time by 40x. Like before, with larger experiments the system
does not create more than 4 instances (Figure 3.8a) until reaching 200 concurrent
requests. For instance, Figure 3.8b shows an execution where 13 instances were
already up and ends with 18 servers processing invocations. As a note, this
last experiment runs 200 tasks (embarrassingly parallel), each of them with an
expected duration of 1.2 seconds. Such computation should take 1.2 seconds plus
some system overhead (all tasks are parallel). However, the whole experiment
takes more than 30 seconds with a maximum parallelism of 18.

3.5. Experiment on Microsoft Azure 55

0 930 1860 2790 3720 4650 5580 6510 7440
Time (s)

0

200

400

600

800

1000

Fu
nc

tio
n

In
vo

ca
tio

n

Concurrency

(a)

30 35 40 45
Function execution time (s)

0

50

100

150

200

250

#
Fu

nc
tio

n
in

vo
ca

tio
ns

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b)

Figure 3.9: Large-scale experiment on Azure.

Revisited Due to the poor parallelism experienced, we decide to revisit this
experiment in March 2021. The configuration is the same but for the region of
deployment. Since the experiments on the other platforms were performed on
US regions, we move to “Central US”. This way, we discard the datacenter from
causing these problems and avoid peak hours on that region in case heavy traffic of
other users may have affected performance. However, we find the same behavior
experienced months before. Indeed, the low parallelism seems related to the Scale
Controller component and its policies for spawning new instances and not to the
load in a specific datacenter.

On a bigger scale Figure 3.9 shows the results of executing the larger config-
uration with 1000 parallel requests. In line with the previous runs, concurrency
is very limited with just a few instances, affecting the total execution time. The
histogram shows fairly consistent run times, meaning that, when limiting per in-
stance concurrency, the resources for each invocation are well ensured. Azure,
always having a full vCPU regardless of configuration, has faster execution times
than the other platforms (in this experiment the others have less than a vCPU).

3.5.2 Discussion

Q1 Azure Functions is not designed for high parallelism or heavy computation.
Our experiments clearly show that the service is reluctant to scale and function
invocations are queued on a few instances. Also, instances take invocations at
irregular intervals, even when processing other invocations. In general, but most

56 Chapter 3. Studying Parallelism in FaaS

noticeable with computing tasks, the service does not create instances until there
is high load, meaning that, in some cases, 100 requests end up being handled by
the same instance. Changing configuration to limit instance concurrency confirms
that the system needs considerable load to spin up new instances. In particular,
only a parallelism of 18 is achieved when running 200 concurrent invocations. We
should note that the service does not target this kind of applications, and that
their approach is resource-efficient for I/O tasks.

Q2 More than one invocation is assigned to each instance concurrently, pro-
ducing the stairs-like shape in the plots. This happens for both sleeping and
computing tasks, which unlinks its cause from the resource usage of a task. The
consequence is an important interference that, although sleeping functions obvi-
ously do not notice, it heavily affects computing tasks. Invocations that should
take 1.2 seconds span out to minutes with 200 concurrent requests (Figure 3.7f).
We find a solution for this issue in limiting per-instance concurrency. Although
we still do not reach the desired parallelism for the job, execution time is much
better and consistent with this limit.

We also see that responses to the client are throttled when there is high concur-
rency in an instance, perceived on client times (black Xs). On less busy instances,
responses are almost immediate (Figure 3.7b). This hints to more interferences.

Q3 In the cases that include cold starts, host creations are at least a second
apart, in line with the documentation [28]. However, we also see that the delay in
host creation can be significant and function requests are assigned to new instances
even before they can process them, resulting in important delays. For example, in
Figure 3.7a most of the invocations are resolved in the first 6 s by 3 fast-spawning
hosts, but some of them were assigned to a fourth instance that took almost 20 s
to start, delaying invocations that could have run earlier on the other hosts.

Azure Functions is generally conservative with resources. For example, we
do not see much scale until reaching 200 parallel requests, and it is restricted
by the one “instance per second” limit. This prudent scheduling configuration is
what mainly differentiates Azure from other providers. While others create new
instances quite eagerly, Azure tends to pack as many invocations as possible to
reduce resource consumption. The approach works really well for the I/O-bound
tasks the service primarily targets, since it makes better use of resources, reduces
costs, and facilitates management.

3.6. Experiment on Google Cloud Platform 57

3.6 Experiment on Google Cloud Platform
We deploy and update our function with the GCP CLI. The invocation ID is
obtained from one of the request headers in the function. It is also available for
the client in the HTTP response. Differently from other providers, Google erases
all information that could identify a container for the instance ID. To check if the
container is the same, we use global code that generates an identifier during a
cold start. This is reliable since the Python file is only loaded once per container.

3.6.1 Results

Experiments with sleeping functions With the small functions (256 MiB)
and the sleeping task, an execution with 50/10/𝑆/𝑠 results in Figure 3.10a. Each
invocation runs on a different container. Note how the run only keeps 2 instances
warm from a previous execution of 10. Figure 3.10b shows 200/200/𝑆/𝑠. It is the
second consecutive execution with this configuration, so we expect all instances
warm; however, most hit a cold start. Still, the service runs each request on a
different container.

Experiments with computing functions Still with small functions, we test
the compute-intensive tasks. We start running the function individually and assess
that the computation takes 5.5 s with this configuration. Figures 3.10c and 3.10d
show invocations of this experiment with different parallelism, where we clearly
see the performance difference between cold and warm containers. On cold in-
vocations, the computation takes 3.5 s, while warm executions take up to 10 s.
Also, warm containers are recycled very quickly. For instance, the 200-requests
execution, run right after a 100 one, only finds 84 warm containers.

With 2 GiB functions (big configuration), the maximum memory configurable
for GCP, function time for the individual execution reduces to 1.3 s. Figures 3.10e
and 3.10f show subsequent invocations of this experiment with different paral-
lelism. Like previously, the system keeps full parallelism. However, execution
time still varies significantly from 1.3 to 4 s.

These are the best scenarios experienced. However, the system seems to throt-
tle big functions, queueing some invocations and even rejecting them. Figure 3.11
shows samples of such cases, experienced after performing less than 1000 requests.

On a bigger scale Figure 3.12 depicts the results when running the larger
configuration with 1000 asynchronous invocations. We see that, despite requesting
1000 invocations at once, only 550 functions run in parallel at first, and then

58 Chapter 3. Studying Parallelism in FaaS

0 2000 4000 6000 8000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(a) 50/10/𝑆/𝑠

0 2000 4000 6000 8000
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n
(b) 200/200/𝑆/𝑠

0 2000 4000 6000 8000 10000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(c) 50/10/𝐶/𝑠

0 2000 4000 6000 8000 10000
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(d) 200/100/𝐶/𝑠

0 2000 4000 6000 8000 10000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(e) 50/20/𝐶/𝑏

0 2500 5000 7500 10000 12500
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(f) 200/100/𝐶/𝑏

Figure 3.10: Experiment on GCP.

3.6. Experiment on Google Cloud Platform 59

0 2000 4000 6000 8000 10000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(a) 50/50/𝐶/𝑏

0 2500 5000 7500 10000 12500
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(b) 200/100/𝐶/𝑏

Figure 3.11: Server errors on GCP. The red bars are rejected requests.

another batch of 450 functions are run later. With the help of the histogram, we
also notice a wide variety of function execution times. This behavior seems to
confirm the differences between cold and warm invocations seen before, but also
evinces further interferences in resources and/or heterogeneity of resources.

3.6.2 Discussion

Q1 Mostly, all invocations get a new instance, which allows good parallelism.
However, the scheduling looks more complicated than in other platforms and
imposes several rate limits. For instance, functions with more memory are less
elastic. We experienced a lot of throttling with 2 GiB functions and even failed
requests. Given the size of our experiments, this suggests a more restrictive rate
limit than stated in the documentation [78]. While this does not affect functions
at small scale, it is an issue for large-scale embarrassingly parallel tasks. Also, the
service removes idle containers very quickly and subsequent runs of the experiment
do not all find warm containers, and there are always cold starts. This can be
an important issue for latency-sensitive applications, and also hinders parallelism.
As an example, although invocations run on different instances, not all of them
are running in parallel, simultaneously. E.g., from 200 requests less than 100 run
in parallel and the big scale experiment only found a concurrency of 550.

Q2 With the information gathered from the environment, we see that all invoca-
tions run on a 2 GiB microVM. This is different from AWS, where each microVM
is configured with its memory corresponding to the function configuration. The

60 Chapter 3. Studying Parallelism in FaaS

0 26 52 78 104 130 156 182 208
Time (s)

0

200

400

600

800

1000

Fu
nc

tio
n

In
vo

ca
tio

n

Concurrency

(a)

40 60 80 100
Function execution time (s)

0

20

40

60

80

#
Fu

nc
tio

n
in

vo
ca

tio
ns

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b)

Figure 3.12: Large-scale experiment on GCP.

microVMs also have 2 vCPUs, which in most instances run at 2.7 GHz, and some
at 2.3 GHz. Since all functions run on equally sized microVMs, the different CPU
limits in the documentation [77] are probably imposed through CPU slices.

However, in experiments with the compute task, execution time is not consis-
tent across invocations, suggesting that the limit is not well ensured. For instance,
the 256 MiB functions complete in 2 and up to 10 s. Even with 2 GiB functions
(corresponding to a full microVM), performance is inconsistent, ranging from 1.3
to 4 s. The most surprising finding is that there seems to be a significant per-
formance difference between warm and cold invocations, being cold ones much
faster.

Q3 We can add the following conclusions: (i) Scheduling is based on several
parameters (e.g., function size, invocation rate, function run time, etc.), and it
affects scalability. (ii) Cold starts usually induce a delay around 3 seconds, but it
increases with parallelism and memory size.

3.7 Experiment on IBM Cloud
We deploy and update our function with the IBM Cloud CLI on the default pack-
age in a simple namespace, by directly uploading the source code. The invocation
ID is at the environment variable “__OW_ACTIVATION_ID”. The most reliable way
to identify a container is through the randomly generated identifier present at
/proc/self/cgroup; Docker writes the container name there [58]. We obtain the
system uptime to identify the VM where each container runs. Even collected from

3.7. Experiment on IBM Cloud 61

0 500 1000 1500 2000 2500
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(a) Plot without the VM inference

675400 675600 675800
VM uptime (s)

0

20

40

60

In
st

an
ce

co
un

t

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Uptime distribution

Figure 3.13: Guessing the VM on IBM for an execution with 200 requests.

a container, the uptime corresponds to the container host, which is the Invoker
VM. Although not fully reliable, it can help us guess container co-residency.

3.7.1 Results

Guessing the VM from the system uptime The plot for a 200-requests
execution would look like Figure 3.13a. Each invocation is running on a different
container, but some of them could be on the same VM. By getting the system
uptime, we can display container co-residency.7 We represent the system uptime
gotten at each function instance in Figure 3.13b. If the uptime gotten by different
invocations is similar, they are likely co-residents of the same VM. Since invo-
cations are not exactly simultaneous (they do not read the uptime at the same
instant), never two of them will get the exact same uptime. However, since the
whole experiment lasts 3 seconds, two co-resident invocations will get an uptime
different by at most 3 seconds (usually in the same second since it is collected near
function start). The CDF gives a very precise view. Each step in the curve is all
the invocations that got a similar uptime, and thus co-residents. With the infor-
mation from the histogram, we can count how many invocations run on each VM.
If two VM uptimes are too close, the accompanying histogram may pack invoca-
tions from different machines in the same bar, but we can still distinguish them
with the CDF. Since we know that all invocations run concurrently, this gives us
the VM maximum concurrency. For instance, we see that most histogram bars

7A detailed description of a similar method for machine identification was previously intro-
duced by Lloyd et al. [122].

62 Chapter 3. Studying Parallelism in FaaS

count 32. One reaches 64, but we see in the CDF that it comprises two steps,
thus being in fact two VMs. This means that it is very likely that each machine
holds a maximum of 32 containers in this experiment.

We merge this data into our plot to build Figure 3.14b. The color blocks at
the sides indicate the guessed VM based on the system uptime. There is also a
black line that separates VMs for clarity. Additionally, the service collects the
time the invocation has been waiting in the system. We plot it as black diamonds
to indicate when the system received the request.

Experiments with sleeping functions With small functions and the sleeping
task, we first run a cold execution with 10 parallel requests. A subsequent execu-
tion with 50 requests results in Figure 3.14a. Figure 3.14b shows 200/200/𝑆/𝑠.

Figure 3.15a shows a cold start for 500 parallel invocations. In this case, two
side blocks are twice as big as the others. However, in the CDF (Figure 3.15b) it
is clear that each step is in fact of 32 containers. This case uses more VMs than
the previous, and it is easier to find several machines with very similar uptime.
This experiment also shows an interesting behavior of cold starts in OpenWhisk.
Each VM has one invocation that runs almost as in a warm start, while the others
take some extra seconds. This corresponds to the fact that OpenWhisk starts an
empty container on each Invoker machine before receiving any request. It also
validates that the bigger side blocks are in fact two VMs since they have two of
these early invocations.

Experiments with computing functions We now switch to the compute-
intensive task, still with small functions. An individual execution assesses that
the computation takes 1.3 s. Figures 3.14c and 3.14d show subsequent invocations
with different parallelism. We see clearly that execution time is affected and
increases as the VMs fill up with containers. Our 1.3-second tasks take from 8 to
15 s on machines full with 32 containers.

With 2 GiB functions, which should have a full CPU as per our calculations,
an individual execution still takes 1.3 s. Figures 3.14e and 3.14f show subsequent
invocations with different parallelism. In this case, function run time is more
consistent and maintains around 1.3 s. However, some executions span for up
to an additional second, which hints us to other resource interferences. Here,
the 200 execution requires more VMs than any previous experiment, leading to
a similar situation than with the previous 500 execution (Figure 3.15a). In its
uptime distribution (omitted), we identify 50 steps, which proves that each VM
holds four 2 GiB containers.

3.7. Experiment on IBM Cloud 63

0 2000 4000 6000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(a) 50/0/𝑆/𝑠

0 500 1000 1500 2000 2500
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n
(b) 200/200/𝑆/𝑠

0 5000 10000 15000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(c) 50/10/𝐶/𝑠

0 5000 10000 15000
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(d) 200/200/𝐶/𝑠

0 1000 2000 3000
Time (ms)

0

10

20

30

40

50

Fu
nc

tio
n

In
vo

ca
tio

n

(e) 50/10/𝐶/𝑏

0 1000 2000 3000
Time (ms)

0

50

100

150

200

Fu
nc

tio
n

In
vo

ca
tio

n

(f) 200/200/𝐶/𝑏

Figure 3.14: Experiment on IBM.

64 Chapter 3. Studying Parallelism in FaaS

0 2000 4000 6000 8000
Time (ms)

0

100

200

300

400

500

Fu
nc

tio
n

In
vo

ca
tio

n

(a) Parallelism

1.0134 1.0136 1.0138 1.0140 1.0142
VM uptime (s) ×106

0

20

40

60

In
st

an
ce

co
un

t

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Uptime distribution

Figure 3.15: 500/0/𝑆/𝑠 on IBM.

On a bigger scale The plot for the configuration with 1000 invocations ap-
pears in Figure 3.16, showing full parallelism from the start. However, several
invocations take significantly longer to finish computation, doubling total com-
pletion time. The histogram shows this wide distribution of function run time.
Resource heterogeneity and the interferences we perceived in previous experiments
are possible causes of this variability.

3.7.2 Discussion

Q1 Generally, IBM Cloud Functions shows compelling parallelism with all new
invocations starting a new container if there is none immediately available. This
allows high-level parallelism as invocations come and enables full parallelism in all
our experiments. This behavior presents a good fit for parallel tasks. Nonetheless,
we have seen two unusual exceptions were an invocation got delayed in the system
and reused a container.

Q2 We can infer function resource management and VM distribution from the
experiments. Gathering system information, each machine presents 4 CPUs and
16 GiB of RAM. However, only 8 GiB are assigned to functions on each machine.
We deduce this by seeing that a single VM only allocated 32 instances of 256 MiB,
or 4 of 2048 MiB.

The compute tasks show that CPU is not strictly limited by the system, but the
amount of memory given to each container will determine how much interference
with others there will be, and thus how much CPU can be guaranteed to each one.

3.7. Experiment on IBM Cloud 65

0 17 34 51 68 85 102 119 136
Time (s)

0

200

400

600

800

1000

Fu
nc

tio
n

In
vo

ca
tio

n

Concurrency

(a)

50 75 100 125
Function execution time (s)

0

20

40

60

#
Fu

nc
tio

n
in

vo
ca

tio
ns

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b)

Figure 3.16: Large-scale experiment on IBM.

This resolves that each container with 2 GiB of memory will get a full CPU but
could use up to four if the remaining of the VM is not used. 256 MiB containers
will get at least 0.125 CPU in a congested machine but could also get all 4 CPUs
in a free machine. It is a generous policy where the provider gives users more
resources than requested.

We have seen this resource interference clearly in our experiments. With
small functions, an individual invocation takes the same as in a 2 GiB function:
1.3 s. However, with parallel requests, the functions run in groups of 32 per
VM and get 0.125 of CPU each, which means a time increase of 8×: 10.4 s. We
see this behavior in the plots, although with considerable variance (10–15 s). In
contrast, the invocations that run on less crowded machines run much faster (see
Figure 3.14d)

Q3 The experiments also sketch that: (i) Scheduling is straightforward: if upon
request arrival there are no containers idle, a new one is created. (ii) Cold starts
can be as low as 1 or 2 s, but they grow with parallelism. (iii) We see that
each VM provides a container pre-warmed. Although it can be helpful for certain
applications, it is not that important for parallel workloads. (iv) The non-strict
resource assignment is a good advantage, but the user should be conscious of it
to avoid unexpected behavior.

66 Chapter 3. Studying Parallelism in FaaS

Table 3.4: Summary of experiment results. Parallelism metrics from Section 3.3.6.

AWS Azure GCP IBM
Cold start (≈) 300 ms 2–20 s 2–6 s 1–4 s
Completion time 1.5 s 31 s 12.5 s 3.5 s

Parallel degree 200 18 < 100 200
100% 11% < 50% 100%

Failures None None Rejects None

3.8 Experiment summary
Table 3.4 summarizes the metrics defined in Section 3.3.6 as perceived in Sec-
tions 3.4 to 3.7. We discuss them next for each platform:

AWS Lambda Currently, cold starts tend to stay around 300 ms [127]. Our ex-
periments (see Section 3.4) match this tendency consistently, without substantial
changes with increased concurrency. AWS Lambda completes the 200 requests
in just 1.5 seconds (Figure 3.5f), which is the fastest with just half a second
of overhead. This is possible because all invocations run on different instances
and instantiation is quick, hence the parallel degree of 200 (100%). We did not
experience any failure.

Azure Functions Instances generally start in 2–6 s [127]. However, we find
much larger delays (Section 3.5), sometimes over 20 s. This could be explained by
increased delay in finding resources or the scale controller delaying instantiation
and not directly by the overhead of creating an instance. The 200 requests ex-
periment is completed in about 31 s (Figure 3.8b). This is precisely because the
service only used a maximum of 18 instances, which is only an 11% of the total
invocations. However, none of the invocations failed or were rejected.

Google Cloud Functions Other benchmarks [127] place GCP’s cold starts
around 3 seconds. Our experiments (Section 3.6) show a similar trend: small
instances starting in4 s and big ones in 2 s. However, they experience increasing
delay with parallelism; up to 8 s (Figure 3.10e). The completion time for the
200 requests is at 12.5 s (Figure 3.10f). Although all invocations run in different
instances, the service did not keep all of them warm, and only 84 are available
from the start. The presence of cold starts delays some invocations and expands
completion time. Incidentally, the number of instances used at the same time

3.9. Do FaaS platforms fit parallel computation? 67

never reaches 100, leaving parallelism below 50%. Additionally, many requests
are throttled or rejected with the big setup, as shown in Figure 3.11.

IBM Cloud Functions We typically see cold starts ranging from 1 to 2 s, and
the experiments (Section 3.7) indicate it increases with scale, reaching up to 5 s
with 500 requests. The 200-request experiment finishes in 3.5 s. All invocations
run on different instances, achieving the maximum parallelism of 200 (100%),
which leaves all overhead to instance creation delay. All invocations completed
without failures.

3.9 Do FaaS platforms fit parallel computation?
With the analysis of the architectures in Section 3.2, the empirical study in Sec-
tions 3.3 to 3.7, and the metrics summary in Section 3.8, we can finally answer
the main question proposed in this chapter: Do FaaS platforms fit parallel com-
putation?. We do so through the discussion of our main conclusions next.

Not all FaaS platforms follow the same architecture, which has high impact
on parallel performance. Two aspects directly influence their support for parallel
computation:

Virtualization technologies. They establish how secure and isolated are func-
tion instances and how much it takes to start them. As discussed in Section 3.2,
Table 3.1 shows a relation between the technology and the general architecture
design, both impacting invocation latency. Table 3.4 reveals that platforms with
lighter technologies generally provide better cold starts. AWS Lambda shows the
best latency with its Firecracker microVMs.

Scheduling approach. It defines resource management and how invocations
traverse the system. We identified two approaches in Section 3.2. The push-based
approach is generous with resources since it can rush decisions and immediately
spin up instances when none is available. AWS and IBM clearly show this on
Figures 3.5 and 3.14. It improves parallelism, but to be efficient for the provider,
resources need to be managed at fine granularity and instances spawn very quickly.
The pull-based approach utilizes resources more efficiently, packing more invoca-
tions on the same instances. Usefully, it can enhance management for the provider,
and reduce costs for the users. A downside is that its reactive elasticity is slower
to adapt to current demand and is very dependent on its tunning. Azure is fairly
restrictive in that way, as experienced in Section 3.5.

Azure Functions stands out from the other platforms when dealing with
parallelism. Its behavior is very different due to its particular scheduling (how

68 Chapter 3. Studying Parallelism in FaaS

invocations are sent to instances) and resource management (how instances are
created and removed). These characteristics, described in Section 3.2.3 and vi-
sualized in Section 3.5, explain the poor elasticity experienced by Kuhlenkamp
et al. [113], and the limited request throughput assessed by Maissen et al. [127],
among other works [116, 177]. The service is tuned for efficiency in cost and re-
source management. It packs invocations on a few instances to maximize resource
utilization and reduce costs for the users and management for the provider. This
configuration makes sense, since the service is built atop Azure WebJobs, focused
on web applications, and it is great for short I/O-bound tasks where the high
per-instance concurrency is a big ally. However, it does not work well for parallel,
compute-intensive tasks (see, e.g., Figure 3.7f), since scaling is degraded in favor
of instance concurrency. Even when limiting instance concurrency to enhance
compute-bound applications, the service prefers queueing invocations to a few
instances before starting new ones, incurring in significant delays (Figure 3.8b).

Performance for parallel computation changes considerably between
platforms, since none was, at least initially, designed for this kind of applica-
tions. AWS and IBM’s services are able to provide full parallelism for parallel
workloads, as demonstrated by PyWren [98] and IBM-PyWren [149]. Our exper-
iments show in detail how each invocation is dealt by a different instance and
invocation latency is kept low, enabling all tasks to run in parallel. Google’s
platform also shows similar scaling behavior in our detailed tests. However, as
discussed earlier (Section 3.8), we start to see failed invocations with relatively
small parallelism (the aforementioned papers run thousands of parallel functions).
Finally, we already discussed above how Azure Functions is not prepared for these
tasks (Table 3.4), and it would struggle to support them.

In sum, FaaS is not inherently good for parallel computation and perfor-
mance strongly depends on the platform design and configuration by the provider.
Consequently, users must be aware of the parallel capabilities of the platform they
choose in order to understand how their applications will behave.

Our conclusions help explain several benchmarking works in the literature [49,
113, 116, 127, 177]. Indeed, they already point to the good performance of AWS
and IBM or the sometimes-strange behavior in GCP. And most importantly, the
difference in performance for Azure was already sketched in the literature [112].
However, in this dissertation we analyzed the different platforms from the per-
spective of parallelism and took a deep look into the different architecture designs,
which adds new information and helps to understand the causes of these behav-
iors.

3.10. Chapter summary 69

3.10 Chapter summary
This chapter analyzes the architectures of four major FaaS platforms: AWS
Lambda, Azure Functions, Google Cloud Functions, and IBM Cloud Functions.
Our research focused on the capabilities and limitations the services offer for highly
parallel computation. The design of the platforms revealed two important traits
influencing their performance: virtualization technology and scheduling approach.
We further explored them with detailed experiments to plot parallel executions
and show task distribution in the platform. The experiments evinced that the
different approaches to architecture heavily affect how parallelism is achieved on
a FaaS platform. AWS, IBM Cloud, and GCP run different function instances
for each function invocation, while Azure packs invocations in a few instances.
In consequence, parallelism is thwarted on the latter (only 18% of invocations
run in parallel) and parallel computation suffer big overhead (a 1 s computation
takes 31 s). AWS and IBM always achieve good parallelism (100%). However,
although GCP’s approach is also prone to parallelism, our experiments show con-
flicting performance. The appearance of failed invocations produces stragglers
in the computation and increases complexity for the user, who must manage the
errors.

Chapter 4

Serverless Stateful
Computation

Despite the benefits of serverless computing, applications that require fine-
grained support for mutable state and coordination are notoriously hard to build.
In this chapter, we aim at bridging this gap. We present Crucial, a system
to program highly parallel stateful serverless applications. Crucial retains the
simplicity of serverless computing and offers a model similar to concurrent pro-
gramming but at the scale of a datacenter. A distributed shared memory layer
answers the needs for fine-grained state management and coordination.

The results of this chapter have been published in a conference paper and an
article [34, 35].

72 Chapter 4. Serverless Stateful Computation

4.1 Introduction
Current practices show that serverless computing works well for applications that
require a small amount of storage and memory due to the operational limits
set by the providers (see, e.g., AWS Lambda [14]). However, there are more
limitations. While cloud functions can initiate outgoing network connections,
they cannot directly communicate with each other, and have little bandwidth
compared to a regular virtual machine [43, 177]. This is because the model was
originally designed to execute event-driven functions in response to user actions or
changes in the storage tier (e.g., uploading a file to Amazon S3 [21]). Despite these
constraints, serverless computing applies to many areas. Some recent works show
that this paradigm allows to process big data [98, 141, 149], encode videos [65],
and perform linear algebra [157] and Monte Carlo simulations [93].

4.1.1 Scope and challenges

All these pioneering works prove that serverless computing can escape its initial
area of usage and expand to traditional computing applications. However, pro-
gramming some of these tasks still faces fundamental challenges. Although the
list is too long to recount here, convincing cases of these ill-suited applications
are distributed stateful computations such as machine learning (ML) algorithms.
Just an imperative implementation of 𝑘-means [121] raises several issues: first,
the need to efficiently handle a globally-shared state at fine granularity (the clus-
ter centroids); second, the problem to globally coordinate the cloud functions, so
that the algorithm can correctly proceed to the next iteration; and finally, the
prerogative that the shared state survives system failures.

No serverless system currently addresses all these issues effectively. First, due
to the impossibility of function-to-function communication, the prevalent practice
for sharing state across functions is to use remote storage. For instance, serverless
frameworks, such as PyWren and NumPyWren [157], use highly scalable object
storage services to transfer state between cloud functions. Since object storage
is too slow to share short-lived intermediate state in serverless applications [109],
some recent works use faster storage solutions. This has been the path taken
by Locus [141], which proposes to combine fast, in-memory storage instances
with slow storage to scale shuffling operations in MapReduce. However, with
all the shared state transiting through storage, one of the major limitations of
current serverless systems is the lack of support to handle mutable state at a
fine granularity (e.g., to efficiently aggregate small granules of updates). Such
a concern has been recognized in various works [43, 99], but this type of fast,

4.1. Introduction 73

enriched storage layer for serverless computing is not available today in the cloud,
leaving fine-grained state sharing as an open issue.

Similarly, FaaS orchestration services (such as AWS Step Functions [22] or
OpenWhisk Composer [5]) offer limited capabilities to coordinate cloud func-
tions [66, 99]. They have no abstraction to signal a function when a condition
is fulfilled, or for multiple functions to synchronize, e.g., in order to guarantee
data consistency, or to ensure joint progress to the next stage of computation.
Of course, such fine-grained coordination should be also low-latency to not sig-
nificantly slow down the application. Existing stand-alone notification services,
such as AWS SNS [39] and AWS SQS [69], add significant latency, sometimes
hundreds of milliseconds. This lack of efficient coordination mechanisms means
that each serverless framework needs to develop its own solutions. For instance,
PyWren enforces the coordination of the map and reduce phases through object
storage, while ExCamera has built a notification system using a long-running
VM-based rendezvous server. As of today, there is no general way to let multiple
functions coordinate via abstractions hand-crafted by users, so that fine-grained
coordination can be truly achieved.

4.1.2 Contributions

To overcome the aforementioned issues, we propose Crucial, a framework for
the development of stateful distributed applications in serverless environments.
The base abstraction of Crucial is the cloud thread which maps a thread to
the invocation of a cloud function. Cloud threads manipulate global shared state
stored in the distributed shared objects (DSO) layer. To ease data sharing between
cloud functions, DSO provides out-of-the-box strong consistency guarantees. The
layer also implements fine-grained coordination, such as collectives, to harmonize
the functions. Objects stored in DSO can be either ephemeral or persistent, in
which case they are passivated on durable storage. DSO is implemented with
the help of state machine replication and executes atop an efficient disaggregated
in-memory data store. Cloud threads can run atop any standard Function-as-a-
Service platform.

The programming model of Crucial is quite simple, offering conventional
multi-threaded abstractions to the programmer. With the help of a few annota-
tions and constructs, single-machine multi-threaded stateful programs can execute
as cloud functions. In particular, since the global state is manipulated as remote
shared objects, the interface for mutable state management becomes virtually
unlimited, only constrained by the expressiveness of the programming language
(Java in our case).

74 Chapter 4. Serverless Stateful Computation

Our evaluation shows that Crucial can scale traditional parallel jobs, such
as Monte Carlo simulations, to hundreds of workers using basic code abstractions.
For applications that require fine-grained updates, like ML tasks, our system can
rival, and even outperform, Apache Spark running on a dedicated cluster. We also
establish that an application ported to serverless with Crucial achieves similar
performance to a multi-threaded solution running on a dedicated high-end server.

This chapter describes the following novel contributions:
• We provide the first concrete evidence that stateful applications with needs

for fine-grained data sharing and coordination can be efficiently built using
stateless cloud functions and a disaggregated shared objects layer.

• We design Crucial, a system for the development and execution of stateful
serverless applications. Its simple interface offers fine-grained semantics for
both mutable state and coordination. Crucial is open source and freely
available online [170].

• We show that Crucial is a convenient tool to write serverless-native ap-
plications, or port legacy ones. In particular, we describe a methodology to
port traditional single-machine applications to serverless.

• Crucial is suited for many applications such as traditional parallel compu-
tations, machine learning algorithms, and complex concurrency tasks. The
results show comparable or superior performance to traditional computing
and state of the art solutions with very little coding involvement. This is
achieved at comparable cost but with the added value of no system man-
agement, provided by serverless technologies.

4.2 Background
This section introduces serverless computing and the challenges addressed in this
chapter. We first contextualize this programming model with a description of
AWS Lambda, although other platforms are equally well-suited for this purpose
(e.g., Google Cloud Functions, Azure Functions or Apache OpenWhisk). Further,
we focus on the dilemma of storing and sharing data across functions, then provide
a high-level overview of the solution proposed in Crucial.

4.2.1 FaaS computing: value under restraint

AWS Lambda is a cloud service designed to run user-supplied functions, called
cloud functions, in response to events (e.g., file uploads, message arrivals, etc.),
or explicit API calls (via HTTP requests). A cloud function can be written in

4.2. Background 75

different target languages.1 Before being usable, the code of the function and its
dependencies are uploaded to the FaaS platform. Once deployed, the function is
managed by AWS Lambda, that executes it on demand and at scale. Functions
are stateless, that is, they do not keep a trace of execution from one invocation
to another.

AWS Lambda, as other FaaS computing platforms, gives the advantages of
rapid provisioning, high elasticity, and just-right cost: containers used to deploy a
function can be launched within a few hundreds of milliseconds; they can quickly
scale to match demand; and the service charges at sub-second granularity the
duration of their execution. All these properties make possible to run various
workloads in the cloud with minimal overhead [98, 141, 149, 157].

However, due to their lightweight nature, cloud functions are also subject to
stringent resource restrictions. For instance, AWS Lambda [14] imposes a 15-
minute limit per function invocation and caps memory usage to a few GiBs.
Similar limits are applied by other FaaS providers. In addition, while a user can
execute functions concurrently, direct communication is impossible between them.
As a consequence, the linear scalability in function execution is in practice only
achievable for embarrassingly parallel tasks [83, 99].

Function invocations can also fail for different reasons (e.g., the function raises
an exception, times out or runs out of memory). When an error occurs, AWS
Lambda may automatically retry the invocation [13]. However, this requires the
programmer to carefully consider such a behavior when designing the application,
e.g., by ensuring call idempotence.

4.2.2 The dilemma of shared data

Cloud functions are not addressable in the FaaS platform. This means that they
may initiate a connection with a remote node (e.g., to fetch a web page), but they
cannot listen for incoming requests. FaaS platforms currently do not support
cross-functions communication. Another restriction is that cloud functions are
stateless, that is they do not keep trace of a call from one invocation to another.
These properties greatly simplify scheduling and scalability for the platform. How-
ever, they require the programmer to rely on external services for the application
state [99, 180].

So far, the prevalent choice for storing data has been to rely on a disag-
gregated object storage such as Amazon S3. Typically, object stores have high
access latency (>10 ms) and deliver either limited or costly I/O performance [99,

1AWS Lambda supports many languages directly (e.g., Java, Python), and any other by
providing a custom runtime.

76 Chapter 4. Serverless Stateful Computation

180]. Consequently, most serverless frameworks, like PyWren [98], only allow
coarse-grained operations on shared data. To alleviate this problem, some re-
cent works [135, 141, 157] use their own in-memory storage instances. Although
these systems offer low latency, they do not provide durability, nor convenient
abstractions to synchronize cloud functions.

Another recurring problem is the need to ship data to code [83]. Existing
serverless frameworks access data using storage services that either offer a CRUD
interface or provide a limited set of data types. As a consequence, data is repeat-
edly transported back and forth between the cloud functions and the storage layer.
This negatively impacts performance (especially for large objects) and restrains
concurrency on shared data.

4.2.3 An overview of Crucial

Crucial offers a simplified view of FaaS computing where cloud functions are
seen as a set of cloud threads that communicate through shared state. To achieve
this, the framework organizes mutable shared data in a layer of distributed shared
objects (DSO). Cloud functions remotely call the methods of the objects to read
or update them at fine granularity.

The DSO layer is implemented within a low-latency in-memory data store
and deployed jointly with the serverless application. It delivers sub-millisecond la-
tency —like other in-memory systems such as Redis (see Table 4.2)— and achieves
even better throughput for complex, CPU-bound, concurrent operations (see Fig-
ure 4.2). Both properties, low latency and high throughput, make it an excellent
substrate for mutable shared state and coordination. Crucial also permits data
to persist after the computation, ensuring their durability through replication and
passivation to stable storage.

Although the idea of distributed objects is not novel, to the best of our knowl-
edge, it has never been applied to serverless computing. Such an approach sim-
plifies the programming of stateful applications atop serverless architectures and
further closes the gap between cloud and conventional computing. The next sec-
tions describe the programming model of Crucial and its internals.

4.3 Using Crucial
This section details the programming interface of Crucial and illustrates it with
several applications. We also present a methodology to port a conventional single-
machine application to serverless with the help of our framework.

4.3. Using Crucial 77

Table 4.1: Programming abstractions

Abstraction Description

CloudThread Cloud functions are invoked like threads.

ServerlessES A simple executor service for task groups and distributed
parallel fors.

Shared objects Linearizable (wait-free) distributed objects (e.g.,
AtomicInt, AtomicLong, AtomicBoolean,
AtomicByteArray, List, Map).

Coordination
objects

Shared objects for thread coordination primitives (e.g.,
Future, Semaphore, CyclicBarrier).

@Shared User-defined shared objects. Their methods run on the
DSO servers, allowing fine-grained updates (e.g., .add(),
.update(), .merge()).

Data persistence Long-lived shared objects are replicated. Persistence may
be activated with @Shared(persistence=true).

4.3.1 Programming model

The programming model of Crucial is object-based and can be integrated with
any object-oriented programming language. As Java is the language supported in
our implementation, the following description considers its jargon.

Overall, a Crucial program is strongly similar to a regular multi-threaded,
object-oriented Java one, besides some additional annotations and constructs.
Table 4.1 summarizes the key abstractions available to the programmer that are
detailed hereafter.

Cloud threads A CloudThread is the smallest unit of computation in Crucial.
Semantically, this class is similar to a Thread in conventional concurrent comput-
ing. To write an application, each task is defined as a Runnable and passed to a
CloudThread that executes it. The CloudThread class hides from the program-
mer the execution details of accessing the underlying FaaS platform. This enables
access transparency to remote resources [53, 68].

78 Chapter 4. Serverless Stateful Computation

Serverless executor service The ServerlessES class may be used to execute
both Runnable and Callable instances in the cloud. This class implements the
ExecutorService interface, allowing the submission of individual tasks and fork-
join parallel constructs (invokeAll). The full expressiveness of the original JDK
interface is retained. In addition, this executor also includes a distributed parallel
for to run 𝑛 iterations of a loop across 𝑚 workers. To use this feature, the user
specifies the in-loop code (through a functional interface), the boundaries for the
iteration index, and the number of workers 𝑚.

State handling Crucial includes a library of base shared objects to support
mutable shared data across cloud threads. The library consists of common objects
such as integers, counters, maps, lists and arrays. These objects are wait-free and
linearizable [124]. This means that each method invocation terminates after a
finite number of steps (despite concurrent accesses), and that concurrent method
invocations behave as if they were executed by a single thread. Crucial also gives
programmers the ability to craft their own custom shared objects by decorating a
field declaration with the @Shared annotation. Annotated objects become glob-
ally accessible by any thread. Crucial refers to an object with a key crafted
from the field’s name of the encompassing object. The programmer can override
this definition by explicitly writing @Shared(key=k). Our framework supports
distributed references, permitting a reference to cross the boundaries of a cloud
thread. This feature helps to preserve the simplicity of multi-threaded program-
ming in Crucial.

Data Persistence Shared objects in Crucial can be either ephemeral or per-
sistent. By default, shared objects are ephemeral and only exist during the ap-
plication lifetime. Once the application finishes, they are discarded. Ephemeral
objects can be lost, e.g., in the event of a server failure in the DSO layer, since
the cost of making them fault-tolerant outweighs the benefits of their short-term
availability [109]. Nonetheless, it is also possible to make them persistent with
the annotation @Shared(persistent=true). Persistent objects outlive the appli-
cation lifetime and are only removed from storage by an explicit call.

Coordination Current serverless frameworks support only uncoordinated em-
barrassingly parallel operations, or bulk synchronous parallelism (BSP) [83, 99].
To provide fine-grained coordination of cloud threads, Crucial offers several
primitives such as cyclic barriers and semaphores. These coordination primitives

4.3. Using Crucial 79

Listing 4.1: Monte Carlo simulation to approximate 𝜋 .
1 public class PiEstimator implements Runnable {
2 private final static long ITERATIONS = 100 _000_000 ;
3 private Random rand = new Random ();
4 @Shared (key=" counter ")
5 AtomicLong counter = new AtomicLong (0);
6

7 public void run () {
8 long count = 0;
9 double x, y;

10 for (long i = 0L; i < ITERATIONS ; i++) {
11 x = rand. nextDouble ();
12 y = rand. nextDouble ();
13 if (x * x + y * y <= 1.0) count ++;
14 }
15 counter . addAndGet (count);
16 }
17 }
18

19 List <Thread > threads = new ArrayList <>(N_THREADS);
20 for (int i = 0; i < N_THREADS ; i++) {
21 threads .add(new CloudThread (new PiEstimator ()));
22 }
23 threads . forEach (Thread :: start);
24 threads . forEach (Thread :: join);
25 double output = 4.0 * counter .get () / (N_THREADS * ITERATIONS);

are semantically equivalent to those in the standard java.util.concurrent li-
brary. They allow a coherent and flexible model of concurrency for cloud functions
that is non-existent as of today.

4.3.2 Sample applications

Listing 4.1 presents an application implemented with Crucial. This simple pro-
gram is a multi-threaded Monte Carlo simulation that approximates the value of
𝜋 . It draws a large number of random points and computes how many of them
fall in the circle enclosed by the unit square. The ratio of points falling in the
circle converges with the number of trials toward 𝜋/4 (line 25).

The application first defines a regular Runnable class that carries the esti-
mation of 𝜋 (lines 1 to 17). To parallelize its execution, lines 23 and 24 run a
fork-join pattern using a set of CloudThread instances. The shared state of the
application is a counter object (line 5). This counter maintains the total number

80 Chapter 4. Serverless Stateful Computation

Listing 4.2: Using the ServerlessES to perform a Monte Carlo simulation.
1 ExecutorService se = new ServerlessES ();
2 List <Callable > tasks = IntStream .range (0, N_THREADS)
3 . mapToObj (i -> Executors . callable (new PiEstimator ()))
4 . collect (Collectors . toList ());
5 se. invokeAll (tasks);

Listing 4.3: Mandelbrot set computation in a distributed parallel for.
1 public class Mandelbrot implements Serializable {
2 @Shared (key = " mandelbrotImage ")
3 private MandelbrotImage image = new MandelbrotImage ();
4

5 private static int [] computeRow (
6 int row , int width , int height , int maxIters
7) {...}
8

9 private void compute () {
10 image.init(COLS , ROWS);
11 ServerlessES se = new ServerlessES ();
12 se. invokeIterativeTask (
13 row -> image. setRowColor (
14 row , computeRow (row , COLS , ROWS , MAX_INTERNAL_ITERS)
15),
16 N_TASKS , 0, ROWS
17);
18 se. shutdown ();
19 }
20 }

of points falling into the circle, which serves to approximate 𝜋 . It is updated by
the threads concurrently using the addAndGet method (line 15).

The previous fork-join pattern can also be executed conveniently with the
ServerlessES. In this case, we simply replace lines 19 to 24 in Listing 4.1 with
the content of Listing 4.2.

A second application is shown in Listing 4.3. This program outputs an image
approximating the Mandelbrot set (a subset of C) with a gradient of colors. The
output image is stored in a custom Crucial shared object (line 3). To create
the image, the application computes the color of each pixel (line 5). The color
indicates when the pixel escaped from the Mandelbrot set (after a bounded num-
ber of iterations). The rows of the image are processed in parallel, using the

4.3. Using Crucial 81

invokeIterativeTask method of the ServerlessES class. As seen at line 12,
this method takes as input a functional interface (IterativeTask) and three in-
tegers. The interface defines the function to apply on the index of the for loop.
The integers define respectively the number of tasks among which to distribute the
iterations, and the boundaries of these iterations (fromInclusive, toExclusive).

This second example illustrates the expressiveness and convenience of our
framework. In particular, as in multi-threaded programming, Crucial allows
to define concurrent tasks with lambda expressions and pass them shared vari-
ables defined in the encompassing class.

4.3.3 Portage to serverless

The previous sections detail the programming interface of Crucial and illustrate
it with base applications. In this section, we turn our attention to the problem
of porting existing applications to serverless. We first explain the benefits an
application may have from a port to serverless and a methodology to achieve it.
Further, we present the limitations of this methodology and how the programmer
can overcome them. Section 4.6.4 evaluates the successful application of this
methodology to port Smile [118], a state-of-the-art machine learning library.

Benefits & Target applications Crucial can be used not only to program
serverless-native applications, but also to port existing single-machine applications
to serverless. Successfully porting an application comes with several incentives:
namely the ability to (i) access on-demand computing resources; (ii) scale these
resources dynamically; and (iii) benefit from a fine-grained pricing for their us-
age. To match the programming model of Crucial, Java applications that can
benefit from a portage should be multi-threaded. Moreover, as with other parallel
programming frameworks (e.g., MPI [161] or MapReduce [55]), they should be
inherently parallel.

Methodology Crucial allows to port an existing Java multi-threaded ap-
plication to serverless with low effort. To this end, the following steps should
be taken: (1) Replace the ExecutorService or Thread instances with their
Crucial counterparts, as listed in Table 4.1. (2) Make Serializable each
immutable object passed between cloud threads. (3) Substitute the concurrent
mutable objects shared by threads with the equivalent ones provided by the DSO
layer. For example, an instance of java.util.atomic.AtomicBoolean is replaced
with org.crucial.dso.AtomicBoolean. (4) Regarding coordination primitives,
transform them into distributed objects. As an example, a cyclic barrier can be

82 Chapter 4. Serverless Stateful Computation

replaced with org.crucial.dso.CyclicBarrier, an implementation based inter-
nally on a monitor. Alternatively, org.crucial.dso.ScalableCyclicBarrier
implements the collective described in [85]. (5) If the synchronized keyword is
used, some rewriting is necessary. Recall that this keyword is specific to the Java
language and allows to use any (non-primitive) object as a monitor [86]. Crucial
does not support the synchronized keyword out of the box since it would require
modifying the JVM. Two solutions are offered: (a) create a monitor object in
DSO and use it where appropriate; or (b) create a method for the object used as
a monitor that contains all the code in the synchronized{..} block. Then, this
object is annotated as @Shared in the application, and the method called where
appropriate. The first solution is simple, but it might not be the most efficient
since it requires to move data back and forth between the cloud threads that use
the monitor. The second solution needs rewriting part of the original applica-
tion. However, it is more in line with the object-oriented approach in Crucial,
where an operation updating a shared object is accessible through a (linearizable)
method, and it may perform better.

Limitations & Solutions The above methodology works for most applications,
yet it has limitations. First, some threading features are not available in the
framework —e.g., signaling a cloud thread. Second, Crucial does not natively
support arrays (e.g., T[] tab). Indeed, recall that the Java language offers native
methods to manipulate such data types. For instance, calling tab[i]=x assigns
the value (or reference) 𝑥 to tab[i]. Transforming a native call is not possible
with just annotations.2 The solution to these two problems is to rewrite the
application appropriately, as in the case of synchronized.

Another issue is related to data locality. Typically, a multi-threaded appli-
cation initializes shared data in the main thread and then makes it accessible
to other threads for computation. Porting such a programming pattern to FaaS
implies that data is initialized at the machine starting up the application, then
serialized to be accessible elsewhere; this is very inefficient. Instead, a better ap-
proach is to pass a distributed reference that is lazily de-referenced by the thread.
To illustrate this point, consider Listing 4.4 which counts the number of occur-
rences of the word “serverless” in a document. The application first constructs
a reference to the document (line 2). Then, the document is split into chunks. For
each chunk, the number of occurrences of the word is counted by a cloud thread
(line 8). The results are then aggregated in the shared counter “wordcount”.
Reading the document in full at line 2 and serializing it to construct the chunks

2It is however possible with bytecode manipulation tools (e.g., [41]).

4.4. System design 83

Listing 4.4: Parallel word count.
1 public class WordCount {
2 private Document document = new Document (LOCATION);
3 private String word = " serverless ";
4

5 private void compute () {
6 AtomicLong count = new AtomicLong (" wordcount ");
7 ServerlessES se = new ServerlessES ();
8 se. invokeIterativeTask (
9 i -> count. addAndGet (countWords (word , document .split(i))),

10 N_TASKS , 0, N_TASKS
11);
12 }
13 }

is inefficient. Instead, the application should send a distributed reference to the
cloud threads at line 8. Then, upon calling split, the chunks are created on each
thread by fetching the content from remote storage.

4.4 System design
Figure 4.1 presents the overall architecture of Crucial. In what follows, we detail
the components and describe the lifecycle of an application in our system.

Crucial encompasses three main components (from left to right in Fig-
ure 4.1): (I) the client application; (II) the FaaS computing layer that runs the
cloud threads; and (III) the DSO layer that stores the shared objects. A client ap-
plication differs from a regular JVM process in two aspects: threads are executed
as cloud functions, and they access shared data using the DSO layer. Moreover,
Crucial applications may also rely on external cloud services, such as object
storage to fetch input data (not modeled in Figure 4.1).

4.4.1 The distributed shared objects layer

Each object in the DSO layer is uniquely identified by a reference. Fine-grained
updates to the shared state are implemented as methods of these objects. Given
an object of type 𝑇 , the reference to this object is (𝑇, 𝑘), where 𝑘 is either the name
of the annotated object field or the value of the parameter 𝑘𝑒𝑦 in the annotation
@Shared(key=k). When a cloud thread accesses an object, it uses its reference to
invoke remotely the appropriate method.

84 Chapter 4. Serverless Stateful Computation

FaaS Layer

...

Cloud thread 1

Cloud thread n

Cloud thread 2

DSO Layer

Obj D

Node 0

Obj B

Obj A

Node m

Obj A

Node 1

Obj C

1) Function invocations 2) Access to shared state

21

Client

Application

Figure 4.1: Crucial’s overall architecture.

Crucial constructs the DSO layer using consistent hashing [103], similarly
to Cassandra [114]. Each storage node knows the full storage layer membership
and thus the mapping from data to node. The location of a shared object 𝑜 is
determined by hashing the reference (𝑇, 𝑘) of 𝑜. This offers the following usual
benefits: (i) no broadcast is necessary to locate an object; (ii) disjoint-access
parallelism [94] can be exploited; and (iii) service interruption is minimal in the
event of server addition and removal. The latter property is useful for persistent
objects, as detailed next.

Persistence One interesting aspect of Crucial is that it can ensure durability
of the shared state. This property is appealing, for instance, to support the
different phases of a machine learning workflow (training and inference). Objects
marked as persistent are replicated 𝑟 𝑓 (replication factor) times in the DSO layer.
They reside in memory to ensure sub-millisecond read/write latency and can be
passivated to stable storage using standard mechanisms (marshalling). When a
cloud thread accesses a shared object, it contacts one of the server nodes. The
operation is then forwarded to the actual replicas storing the object. Each replica
executes the incoming call, and one of them sends the result back to the caller.
Notice that for ephemeral (non-persistent) objects, 𝑟 𝑓 is 1.

Consistency Crucial provides linearizable objects and programmers can rea-
son about interleaving as in the shared-memory case. This greatly simplifies
the writing of stateful serverless applications. For persistent objects, consis-
tency across replicas is maintained with the help of state machine replication
(SMR) [153]. To handle membership changes, the DSO layer relies on a variation

4.4. System design 85

of virtual synchrony [48]. Virtual synchrony provides a totally-ordered set of views
to the server nodes. In a given view, for some object 𝑥 , the operations accessing
𝑥 are sent using total order multicast. The replicas of 𝑥 deliver these operations
in a total order and apply them on their local copy of 𝑥 according to this order.
A distinct replica (primary) is in charge of sending back the result to the caller.
When a membership change occurs, the nodes re-balance data according to the
new view.

4.4.2 Fast aggregates through remote procedure call

As indicated in Section 4.2, stateful applications aggregate and combine small
granules of data (e.g., the training phase of a ML algorithm). Unfortunately,
cloud functions are not network-addressable and run separate from data. As a
consequence, these applications are routinely left with no other choice but to “ship
data to code”. This is known as one of the biggest downsides of FaaS platforms [83],
and we explore it further in Chapter 5.

To illustrate this point, consider an AllReduce operation where 𝑁 cloud func-
tions need to aggregate their results by applying some commutative and associa-
tive operator 𝑓 (e.g., a sum). To achieve this, each function first writes its local
result in the storage layer. Then, the functions await that their peers do the
same, fetch the 𝑁 results, and apply 𝑓 sequentially. This algorithm is expensive
and entails a communication cost of 𝑁 2 messages with the storage layer.

Crucial fully resolves this anti-pattern with minimal efforts from the pro-
grammer. Complex computations are implemented as object methods in DSO
and called by the cloud functions where appropriate. Going back to the above
example, each function simply calls 𝑓 (𝑟) on the shared object, where 𝑟 is its lo-
cal result. This is for instance the case at line 9 in Listing 4.4 with the method
counter.addAndGet. With this approach, communication complexity is reduced
to O(𝑁) messages with the storage layer.

We exploit this key feature of Crucial in our serverless implementation of
several ML algorithms (e.g., 𝑘-means, linear regression, random forest). Its per-
formance benefits are detailed in Section 4.6.2.

4.4.3 Lifecycle of an application

The lifecycle of a Crucial application is similar to that of a standard multi-
threaded Java one. Every time a CloudThread is started, a Java thread (i.e., an
instance of java.lang.Thread) is spawned on the client. This thread pushes the
Runnable code attached to the CloudThread to a generic function in the FaaS
platform. Then, it waits for the result of the computation before it returns.

86 Chapter 4. Serverless Stateful Computation

Accesses to some shared object of type T at cloud threads (or at the client) are
mediated by a proxy. This proxy is instantiated when a call to “new T()” occurs,
and either the newly created object of type T belongs to Crucial’s library, or
it is tagged @Shared. As an example, consider the counter used in Listing 4.1.
When an instance of PiEstimator is spawned, the field counter is created. The
“new” statement is intercepted and a local proxy for the counter is instantiated
to mediate calls to the remote object hosted in the DSO layer. If this object
does not exist in the DSO layer, it is instantiated using the constructor defined
at line 5. From thereon, any call to addAndGet (line 15) is pushed to the DSO
layer. These calls are delivered in total order to the object replicas where they
are applied before sending back a response value to the caller.

The Java thread remains blocked until the cloud function terminates. Such a
behavior gives cloud threads the appearance of conventional threads minimizing
code changes and allowing the use of the join() method at the client to establish
synchronization points (e.g., fork/join pattern). It must be noted, however, that
as cloud functions cannot be canceled or paused, the analogy is not complete. If
any failure occurs in a remote cloud function, the error is propagated back to the
client application for further processing.

The case of the ServerlessES builds on the same idea as CloudThread. A
standard Java thread pool is used internally to manage the execution of all tasks.
In the case of a callable task, the result is accessible to the caller in a Future
object.

4.4.4 Fault tolerance

Fault tolerance in Crucial is based on the disaggregation of the compute and
storage layers. On one hand, writes to DSO can be made durable with the help of
data replication. In such a case, Crucial tolerates the joint failure of up to 𝑟 𝑓 −1
servers.3 On the other hand, Crucial offers the same fault-tolerance semantics in
the compute layer as the underlying FaaS platform. In AWS Lambda, this means
that any failed cloud thread can be re-started and re-executed with the exact
same input. Thanks to the cloud thread abstraction, Crucial allows full control
over the retry system. For instance, the user may configure how many retries are
allowed and/or the time between them. If retries are permitted, the programmer
should ensure that the re-execution is sound (e.g., it is idempotent). Fortunately,
atomic writes in the DSO layer make this task easy to achieve. Considering the 𝑘-
means example depicted in Listing 4.5 (or any other iterative algorithm), it simply

3Coordination objects (see Table 4.1) are not replicated. This is not an important issue due
to their ephemeral nature.

4.5. Implementation 87

consists in sharing an iteration counter (line 6). When a thread fails and re-starts,
it fetches the iteration counter and continues its execution from thereon.

4.5 Implementation
The implementation of Crucial is open source and available online [170]. It
consists of around 10K SLOC, including scripts to deploy and run Crucial ap-
plications in the cloud. The DSO layer is written atop the Infinispan in-memory
data grid [129] as a partial rewrite of the Creson project [167].

A Crucial application is written in Java and uses Apache Maven to compile
and manage its dependencies. It employs the abstractions listed in Table 4.1 and
has access to scripts that automate its deployment and execution in the cloud.

To run cloud threads, our prototype implementation relies on AWS Lambda.
Lambda functions are deployed with the help of a Maven plugin [115] and invoked
via the AWS Java SDK. To control the replay mechanism, calls to Lambda are
synchronous. The adherence of Crucial to Lambda is limited and the framework
can execute atop a different FaaS platform with a few changes. In Chapter 2, we
discuss this platform dependency.

The ServerlessES implements the base ExecutorService interface. It ac-
cepts Callable objects and task collections. The invocation of a Callable re-
turns a (local) Future object. This future is completed once a response from
AWS Lambda is received. For Runnable tasks, the response is empty unless an
error occurs. In that case, the system interprets it and throws an exception at
the client machine, referencing the cause.

To create a distributed parallel for, the ServerlessES provides a conve-
nient method (as illustrated at line 12 in Listing 4.3). This method accepts an
IterativeTask functional interface similar to java.util.function.Consumer
but limited to iteration indexes (i.e., the input parameter must be an integer).
Internally, the iterative task creates a collection of Callable objects. In the cur-
rent prototype, the scheduling is static and based on the number of workers and
tasks given in parameter.

When an AWS Lambda function is invoked, it receives a user-defined Runnable
(or Callable) object. The object and its content are marshalled and shipped to
the remote machine, where they are re-created. Initialization parameters can be
given to the constructor. As pointed out in Section 4.3.1, a distributed reference
is sent in lieu of a shared object.

Proxies for the shared objects are waved into the code of the client application
using AspectJ [106]. In the case of user-defined objects, the aspects are applied

88 Chapter 4. Serverless Stateful Computation

to the annotated fields (see Section 4.3.1). Such objects must be serializable, and
they should contain an empty constructor (similarly to a JavaBean). The jar
archive containing the definition of the objects is uploaded to the DSO servers
where it is dynamically loaded.

Coordination objects (e.g., barriers, semaphores, futures) follow the structure
of their Java counterparts. Some of them rely internally on Java monitors. When
a client performs a call to a remote object, it remains blocked until the request
responds. The server processes the operation with a designated thread. During
the method invocation, that thread may suspend itself through a wait call on the
object until another thread awakes it.

State machine replication (SMR) is implemented using Infinispan’s interceptor
API. This API enables the execution of custom code during the processing of a
data store operation. It follows the visitor pattern as commonly found in storage
systems. Infinispan relies on JGroups [81] for total order multicast. The current
implementation uses Skeen’s algorithm [38].

In our prototype, the deployment of the storage layer is explicitly managed
(like, e.g., AWS ElastiCache). Automatic provisioning of storage resources for
serverless computing remains an open issue [43, 99], with just a couple works
appearing very recently in this area [109, 141].

4.6 Evaluation
Goal and scope The core objective of this evaluation is to understand the
benefits of Crucial to program applications for serverless. To this end, we
distinguish two types of applications: serverless-native and ported applications.
Serverless-native applications are those written from scratch for a FaaS infrastruc-
ture. Ported applications are the ones that were initially single-machine applica-
tions and were later modified to execute atop FaaS. For both types of applications,
our evaluation campaign aims at providing answers to the following questions:

- How easy is it to program with Crucial? In addressing this question, we
specifically focus on the following applications: machine learning, data an-
alytics and coordination tasks. These applications are parallel and stateful,
that is they contain parallel components that need to update a shared state
and coordinate to make progress.

- Do applications programmed with Crucial benefit from the capabilities of
serverless (e.g., scalability and on-demand pricing)?

4.6. Evaluation 89

- How efficient is an application programmed with Crucial? For serverless-
native applications, we compare Crucial to PyWren, a state-of-the-art so-
lution for serverless programming. We also make a comparison with Apache
Spark, the de facto standard approach to program stateful cluster-based
programs. For ported applications, we compare Crucial to a scale-up ap-
proach, using a high-end server.

- How costly is Crucial with respect to other solutions? Here we are inter-
ested both in the programming effort to code a serverless application and
its monetary cost when running atop a FaaS platform. Again, answers are
provided for both serverless-native and ported applications.

Experimental setup All the experiments are conducted in Amazon Web Ser-
vices (AWS), within a Virtual Private Cloud (VPC) located in the us-east-1
region. Unless otherwise specified, we use r5.2xlarge EC2 instances for the
DSO layer and 3 GiB AWS Lambda functions. Experiments with concurrency
over 300 cloud threads are run outside the VPC due to service limitations.

The code of the experiments presented in this section is available online [170].

Outline We first evaluate the runtime of Crucial with a series of micro-
benchmarks (Section 4.6.1). Then, we focus on fine-grained updates to shared
mutable data (Section 4.6.2) and fine-grained coordination (Section 4.6.3). Fur-
ther, we explore porting a existing library to serverless (Section 4.6.4). Finally,
we analyze the usability of our framework when writing (or porting) applications
(Section 4.6.5).

4.6.1 Micro-benchmarks

As depicted in Figure 4.1, the runtime of Crucial consists of two components:
a Function-as-a-Service (FaaS) platform and the DSO layer. In this section, we
evaluate the performance of this runtime across several micro-benchmarks. We
first measure the latency and throughput of DSO, then we turn our attention to
evaluate the parallelism offered by the underlying FaaS platform (AWS Lambda).

Latency Table 4.2 compares the latency to access a 1 KiB object sequentially
in Crucial (DSO), Redis, Infinispan, and S3. We chose Redis because it is a
popular key-value store available on almost all cloud platforms, and it has been
extensively used as storage substrate in prior serverless systems [98, 109, 141].
Each function performs 30K operations and we report the average access latency.

90 Chapter 4. Serverless Stateful Computation

Table 4.2: Average latency comparison – 1 KiB payload

PUT GET
S3 34,868 𝜇s 23,072 𝜇s
Redis 232 𝜇s 229 𝜇s
Infinispan 228 𝜇s 207 𝜇s
Crucial 231 𝜇s 229 𝜇s
Crucial (𝑟 𝑓 = 2) 512 𝜇s 505 𝜇s

In Table 4.2, Crucial exhibits a performance similar to other in-memory systems.
In particular, it is an order of magnitude faster than S3. This table also depicts
the effect of object replication. When data is replicated, SMR adds an extra
round-trip, doubling the latency perceived at a client. The number of replicas
does not affect this behavior, as shown in the next experiment.

Throughput We measure the throughput of Crucial and compare it against
Redis. For an accurate picture, replication is enabled in both systems to capture
their performance under scenarios of high data availability and durability.

In this experiment, 200 cloud threads access 800 shared objects during 30 s.
The objects are chosen at random. Each object stores an integer offering basic
arithmetic operations. We consider simple and complex operations. The simple
operation is a multiplication. The complex one is the sequential execution of 10K
multiplications. In Redis, these operations require several commands which run
as Lua scripts for both consistency and performance.

To replicate data, Redis uses a master-based mechanism. By default, replica-
tion is asynchronous, so the master does not wait for a command to be processed
by the replicas. Consequently, clients can observe stale data. In our experiment,
to minimize inconsistencies and offer guarantees closer to Crucial, functions is-
sue a WAIT command after each write [144]. This command flushes the pending
updates to the replicas before it returns.

We compare the average throughput of the two systems when the replication
factor (𝑟 𝑓) of a datum varies as follows: (𝑟 𝑓 = 1) Both Crucial and Redis (2
shards with no replicas) are deployed over a 2-node cluster; (𝑟 𝑓 = 2) In the same
2-node cluster, Redis now uses one master and one replica; (𝑟 𝑓 = 3) We add a third
node to the cluster and Redis employs one master and two replicas. In Figure 4.2,
“Redis WAIT 𝑟” indicates that 𝑟 is the number of synchronously replicated copies
of shared objects.

4.6. Evaluation 91

1 2 30.0

0.5

1.0

1.5

2.0

T
hr

ou
gh

pu
t

(o
ps

/s
)

×105 Simple Op

1 2 3

Complex Op

Copies per key

Crucial Redis async Redis WAIT 1 Redis WAIT 2

Figure 4.2: Operations per second performed on Crucial and Redis (with and without
replication). Cloud threads access uniformly at random 800 different keys/objects.

The experimental results reported in Figure 4.2 show that Crucial is not
sensitive to the complexity of operations. Redis is 50% faster for simple oper-
ations because its implementation is optimized and written in C. However, for
complex operations, Crucial is almost five times better than Redis. Again,
implementation-specific details are responsible for this behavior: while Redis is
single-threaded, and thus concurrent calls to the Lua scripts run sequentially,
Crucial benefits from disjoint-access parallelism [94]. When objects are repli-
cated, the comparison is similar. In particular, Figure 4.2 shows that Crucial
and Redis have close performance when Redis operates in synchronous mode.

This experiment also verifies that the performance of Crucial is not sensitive
to the number of replicas. Indeed, the throughput in Figure 4.2 is roughly equiv-
alent for all values of 𝑟 𝑓 ≥ 2. This comes from the fact that Crucial requires a
single RTT to propagate an operation to the replicas.

Parallelism We first evaluate our framework with the Monte Carlo simulation
presented in Listing 4.1. This algorithm is embarrassingly parallel, relying on
a single shared object (a counter). The simulation runs with 1 to 800 cloud
threads, and we track the total number of points computed per second. The
results, presented in Figure 4.3a, show that our system scales linearly and that it
exhibits a 512× speedup with 800 threads.

92 Chapter 4. Serverless Stateful Computation

0 250 500 750
Number of threads

0

2

4

6

8

R
an

do
m

po
in

ts
/s

×109

(a)

0 100 200
Number of threads

0

50

100

150

T
im

e
(s

)
(b)

Figure 4.3: (a) Scalability of a Monte Carlo simulation to approximate 𝜋 . Crucial
reaches 8.4 billion random points per second with 800 threads. (b) Scalability of a Man-
delbrot computation with Crucial.

We further evaluate the parallelism of Crucial with the code in Listing 4.3.
This second experiment computes a 30K×30K projection of the Mandelbrot set,
with (at most) 1000 iterations per pixel. As shown in Figure 4.3b, the completion
time decreases from 150 s with 10 threads to 14.5 s with 200 threads: a speedup
factor of 10.2× over the 10-thread execution. This super-linear speedup is due to
the skew in the coarse-grained row partitioning of the image. It also underlines a
key benefit of Crucial. If this task is run on a cluster, the cluster is billed for the
entire job duration, even if some of its resources are idle. Running atop serverless
resources, this implementation ensures instead that row-dependent tasks are billed
for their exact duration.

Takeaways The distributed shared objects (DSO) layer of Crucial is on par
with existing in-memory data stores in terms of latency and throughput. For com-
plex operations, it significantly outperforms Redis due to data access parallelism.
Crucial scales linearly to hundreds of cloud threads. Applications written with
the framework benefit from the serverless provisioning and billing model to match
irregularities in parallel tasks.

4.6.2 Fine-grained state management

This section shows that Crucial is efficient for parallel applications that access
shared state at fine granularity. We detail the implementation of two machine

4.6. Evaluation 93

0 100 200 300
Number of threads

0.2

0.4

0.6

0.8

1.0

Sc
al

eu
p

Ideal scaleup
Crucial
m5.4xlarge
m5.2xlarge

Figure 4.4: Scalability of the 𝑘-means clustering algorithm with Crucial versus single-
machine multi-threading.

learning algorithms in the framework. These algorithms are evaluated against
a single-machine solution, as well as two state-of-the-art frameworks for cluster
computing (Apache Spark) and FaaS-based computation (PyWren).

A serverless 𝑘-means

Listing 4.5 details a 𝑘-means clustering algorithm written with Crucial. This
program computes 𝑘 clusters from a set of points across a fixed number of it-
erations, or until some convergence criterion is met (line 21). The algorithm is
iterative, with recurring synchronization points (line 19), and it uses a small muta-
ble shared state. Listing 4.5 relies on shared objects for the convergence criterion
(line 4), the centroids (line 8), and a synchronization object to coordinate the
iterations (line 2). At each iteration, the algorithm needs to update both the
centroids and the criterion. The corresponding method calls (lines 14, 17 and 18)
are executed remotely in DSO.

Section 4.6.2 compares the scalability of Crucial against two EC2 instances:
m5.2xlarge and m5.4xlarge, with 8 and 16 vCPUs respectively. In this experi-
ment, the input increases proportionally to the number of threads. We measure
the scale-up computed with respect to that fact: scale-up = 𝑇1/𝑇𝑛, where 𝑇1 is
the execution time of Listing 4.5 with one thread, and 𝑇𝑛 when using 𝑛 threads.4
Accordingly, scale-up = 1 means a perfect linear scale-up, i.e., the increase in the
number of threads keeps up with the increase in the workload size (top line in

4In Section 4.6.2, threads are AWS Lambda functions for Crucial, and standard Java threads
for the EC2 instances.

94 Chapter 4. Serverless Stateful Computation

Listing 4.5: 𝑘-means implementation with Crucial.
1 public class KMeans implements Runnable {
2 private CyclicBarrier barrier = new CyclicBarrier ();
3 @Shared (key = "delta")
4 private GlobalDelta globalDelta = new GlobalDelta ();
5 @Shared (key = " iterations ")
6 private AtomicInteger globalIterCount = new AtomicInteger ();
7 // Wraps a list of @Shared centroids
8 private GlobalCentroids centroids = new GlobalCentroids ();
9

10 public void run () {
11 loadDatasetFragment ();
12 int iterCount = globalIterCount . intValue ();
13 do {
14 correctCentroids = globalCentroids . getCorrectCoord ();
15 resetLocalStructures ();
16 localDelta = computeClusters ();
17 globalDelta . update (localDelta);
18 centroids . update (localCentroids , localSizes);
19 barrier .await ();
20 globalIterCount . compareAndSet (iterCount , iterCount ++);
21 } while (iterCount < maxIterations && ! endCondition ());
22 }
23 }

Section 4.6.2). The scale-up is sub-linear when scale-up < 1. As expected, the
single-machine solution quickly degrades when the number of threads exceeds the
number of cores. The solution using Crucial is within 10% of the optimum. For
instance, with 160 threads, the scale-up factor is approximately 0.94. This lowers
to 0.9 for 320 threads due to the overhead of creating the cloud threads.

Comparison with Spark

Apache Spark [182] is a state-of-the-art solution for distributed computation in
a cluster. As such, it is extensively used to scale many kinds of applications in
the cloud. One of them is machine learning (ML) training, as enabled by Spark’s
MLlib [131] library. Most ML algorithms are iterative and share a modest amount
of state that requires per-iteration updates. Consequently, they are a perfect fit to
assess the efficiency of fine-grained updates in Crucial against a state-of-the-art
solution. This is the case of logistic regression and 𝑘-means clustering, which we
use in this section to compare Crucial and Spark.

4.6. Evaluation 95

Setup. For this comparison, we provide equivalent CPU resources to all competi-
tors. In detail, Crucial experiments are run with 80 concurrent AWS Lambda
functions and one storage node. Each AWS Lambda function has 1792 MiB and
2048 MiB of memory for logistic regression and 𝑘-means, respectively. These
values are chosen to have the optimal performance at the lowest cost (see Sec-
tion 4.6.5).5 The DSO layer runs on a r5.2xlarge EC2 instance. Spark exper-
iments are run in Amazon EMR with 1 master node and 10 m5.2xlarge worker
nodes (Core nodes in EMR terminology), each having 8 vCPUs. Spark execu-
tors are configured to utilize the maximum resources possible on each node of the
cluster. To improve the fairness of our comparison, the time spent in loading the
dataset from S3 and parsing it is not considered for both solutions. For Spark,
the time to provision the cluster is not counted. Regarding Crucial, FaaS cold
starts are also excluded from measurements due to a global barrier before starting
the computation.

Dataset. The input is a 100 GiB dataset generated with spark-perf [54] that
contains 55.5M elements. For logistic regression, each element is labeled and
contains 100 numeric features. For 𝑘-means, each element corresponds to a 100-
dimensional point. The dataset has been split into 80 equal-size partitions to
ensure that all partitions are small enough to fit into the function memory. Each
partition has been stored as an independent file in Amazon S3.

Logistic regression. We evaluate a Crucial implementation of logistic regression
against its counterpart available in Spark’s MLlib [131]: particularly the class
LogisticRegressionWithSGD. A key difference between the two implementations
is the management of the shared state. Each iteration, Spark broadcasts the
current weight coefficients, computes, and finally aggregates the sub-gradients in
a MapReduce phase. In Crucial, the weight coefficients are shared objects. Each
iteration, a cloud thread retrieves the current weights, computes the sub-gradients,
updates the shared objects, and synchronizes with the other threads. Once all the
partial results are uploaded to the DSO layer, the weights are recomputed, and
the threads proceed to the next iteration.

In Figures 4.5a and 4.5b, we measure the running time of 100 iterations of the
algorithm and the logistic loss after each iteration. Results show that the iterative
phase is 18% faster in Crucial (62.3 s) than with Spark (75.9 s), and thus the
algorithm converges faster. This gain is explained by the fact that Crucial
aggregates and combines the sub-gradients in the storage layer. On the contrary,

5Starting with a configuration of 1792 MiB, an AWS Lambda function has the equivalent to
1 full vCPU (https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html). Also,
with this assigned memory, the function uses a full Elastic Network Interface (ENI) in the VPC.

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html

96 Chapter 4. Serverless Stateful Computation

Spark Crucial
0

20

40

60

80

It
er

at
io

ns
tim

e
(s

)

(a)

0 20 40 60
Time (s)

0.3

0.4

0.5

0.6

0.7

Lo
gi

st
ic

lo
ss

Spark
Crucial

(b)

Figure 4.5: Comparison of Crucial and the state-of-the-art. (a) Average logistic
regression iterative phase completion time (100 iterations). (b) Logistic regression per-
formance.

each iteration in Spark requires a reduce phase that is costly both in terms of
communication and synchronization.

𝑘-means. We compare the 𝑘-means implementation described above to the one in
MLlib. For both systems, the centroids are initially at random positions and the
input data is evenly distributed among tasks. Figure 4.6a shows the completion
time of 10 iterations of the clustering algorithm. In this figure, we consider dif-
ferent values of 𝑘 to assess the effectiveness of our solution when the size of the
shared state varies. With 𝑘 = 25, Crucial completes the 10 iterations 40% faster
(20.4 s) than Spark (34 s). The time gap is less noticeable with more clusters
because the time spent synchronizing functions is less representative. In other
words, the iteration time becomes increasingly dominated by computation. As in
the logistic regression experiment, Crucial benefits from computing centroids in
the DSO layer, while Spark requires an expensive reduce phase at each iteration.

Comparison with PyWren

We close this section by comparing Crucial to a serverless-native state-of-the-art
solution. To date, the most evaluated framework to program stateful serverless
applications is PyWren [98]. Its primitives, such as call_async and map are
comparable to Crucial’s cloud thread and serverless executor abstractions. Our
evaluation employs Lithops [119], a recent and improved version of PyWren. Py-
Wren is a MapReduce framework. Thus, it does not natively provide advanced

4.6. Evaluation 97

25 50 100 200
Number of clusters

0

50

100

150

200

It
er

at
io

ns
tim

e
(s

) Spark
Crucial

(a)

25 50 100 200
Number of clusters

0

20

40

60

80

100

Sh
ar

ed
ac

ce
ss

tim
e

(s
)

PyWren
Crucial

(b)

Figure 4.6: Comparison of Crucial and the state-of-the-art. (a) Average 𝑘-means
iterative phase completion time (10 iterations) with varying number of clusters. (b)
Average 𝑘-means shared state access time.

features for state sharing and synchronization. Therefore, following the recom-
mendations by Jonas et al. [98], we use Redis for this task.

Setup. We employ the same application, dataset, and configuration as in the
previous experiment. The two frameworks use AWS Lambda for execution. A
single r5.2xlarge EC2 instance runs DSO for Crucial, or Redis for PyWren.

𝑘-means. Implementing 𝑘-means above PyWren requires to store the shared state
in Redis, that is the centroids and the convergence criterion. Following Jonas
et al. [98], we use a Lua script to achieve this. At the end of each iteration,
every function updates (atomically) the shared state by calling the script. This
approach is the best solution in terms of performance. In particular, it is more
efficient than using distributed locking due to the large number of commands
needed for the updates. To synchronize across iterations, we use the Redis barrier
covered in Section 4.6.3.

The Crucial and PyWren 𝑘-means applications are written in different lan-
guages (Java and Python, respectively). Consequently, the time spent in com-
putation for the two applications is dissimilar. For that reason, and contrary to
the comparison against Spark, Figure 4.6b does not report the completion time.
Instead, this figure depicts the average time spent in accessing the shared state
during the 𝑘-means execution for both Crucial and PyWren. This corresponds
to the time spent inside the loop in Listing 4.5 (excluding line 16).

98 Chapter 4. Serverless Stateful Computation

In Figure 4.6b, we observe that the solution combining PyWren and Redis
is always slower than Crucial. This comes from the fact that Crucial allows
efficient fine-grained updates to the shared state. Such results are in line with the
throughput evaluation presented in Section 4.6.1.

Takeaways The distributed shared objects (DSO) layer of Crucial offers ab-
stractions to program stateful serverless applications. DSO is not only convenient
but, as our evaluation confirms, efficient. For two common machine learning
tasks, Crucial is up to 40% faster than Spark, a state-of-the-art cluster-based
approach, at comparable resource usage. It is also faster than a solution using
jointly PyWren, a well-known serverless framework, and the Redis data store.

4.6.3 Fine-grained coordination

This section analyzes the capabilities of Crucial to coordinate cloud functions.
We evaluate the coordination primitives available in the framework and compare
them to state-of-the-art solutions. We then demonstrate the use of Crucial to
solve complex coordination tasks by considering a traditional concurrent program-
ming problem.

Synchronizing a map phase

Many algorithms require coordination at various stages. In MapReduce [55], this
happens between the map and reduce phases, and it is known as shuffle. Shuffling
ensures that the reduce phase starts when all the appropriate data was output
in the preceding map phase. Shuffling the map output is a costly operation in
MapReduce, even if the reduce phase is short. For that reason, when data is
small and the reduction operation simple, it is better to skip the reduce phase
and instead aggregate the map output directly in the storage layer [56]. Crucial
allows to easily implement this approach.

In what follows, we compare different techniques to synchronize cloud func-
tions at the end of a map. Namely, we compare (i) the original solution in PyWren,
based on polling S3; (ii) the same mechanism but using the Infinispan in-memory
key-value data store; (iii) the use of Amazon SQS, as proposed in some recent
works (e.g., Flint [107]); and (iv) two techniques based on the Future object
available in Crucial. The first solution outputs a future object per function,
then runs the reduce phase. The second aggregates all the results directly in the
DSO layer (AR).

We compare the above five techniques by running back-to-back the Monte
Carlo simulation in Listing 4.1. The experiment employs 100 cloud functions, each

4.6. Evaluation 99

0 2 4
Duration (s)

Crucial (AR)

Crucial

PyWren (SQS)

PyWren (Inf)

PyWren (S3)

(a)

0 10 20 30 40 50
Time (s)

b1
b0
a1
a0

Invocation
S3 read

Compute
Sync

(b)

Figure 4.7: (a) Synchronizing a map phase in MapReduce with PyWren, Amazon SQS
and Crucial. (b) Performance breakdown of an iterative task using either multiple
stages (a0/a1), or a single stage with a Crucial barrier (b0/b1).

doing 100M iterations. During a run, we measure the time spent in synchronizing
the functions. On average, this accounts for 23% of the total time.

Figure 4.7a presents the results of our comparison. Using Amazon S3 proves
to be slow, and it exhibits high variability —some experiments being far slower
than others. This is explained by the combination of high access latency, eventual
consistency, and the polling-based mechanism. The results improve with Infinis-
pan, but being still based on polling, the approach induces a noticeable overhead.
Using Amazon SQS is the slowest approach of all. It needs a polling mecha-
nism that actively reads messages from the remote queue. The solution based
on Future objects allows to immediately respond when the results are available.
This reduces the number of connections necessary to fetch the result and thus
translates into faster synchronization. When the map output is directly aggre-
gated in DSO, Crucial achieves even better performance, being twice as fast as
the polling approach atop S3.

Coordination primitives

Cloud functions need to coordinate when executing parallel tasks. This section
evaluates some of the coordination primitives available in Crucial to this end.

For starters, we study the performance of a barrier when executing an iterative
task. In Figure 4.7b, we depict a breakdown of the time spent in the phases of

100 Chapter 4. Serverless Stateful Computation

0 1000 2000
Number of threads

0.0

0.1

0.2

0.3

0.4

0.5
B

ar
rie

r
tim

e
(s

)
SNS+SQS
ZooKeeper
Crucial (P)
Crucial
Redis

Figure 4.8: Average time threads spend waiting on a barrier.

each iteration (Invocation, S3 read, Compute, and Sync). The results are reported
for 2 cloud functions out of 10 —the other functions behave similarly.

The breakdown in Figure 4.7b considers two approaches. The first launches a
new stage of functions (a0 and a1) at each iteration that do not use the barrier
primitive. The second launches a single stage of functions (b0 and b1) that run
all the iterations and use the barrier primitive to synchronize. In the first case,
data must be fetched from storage at each iteration, while in the second approach
it is only fetched once. Overall, Figure 4.7b shows that this latter mechanism is
clearly faster. In particular, the total time spent in coordinating the functions is
lower when the barrier is used (Sync).

Figure 4.8 draws a comparison between two different barrier objects available
in Crucial and several state-of-the-art solutions. More precisely, the figure re-
ports the performance of the following approaches: (i) a pure cloud-based barrier,
which combines Amazon SNS and SQS services to notify the functions; (ii) a
ZooKeeper cyclic barrier based on the official double barrier [8] in a 3-node clus-
ter; (iii) a non-resilient barrier using the Redis BLPOP command (“blocking left
pop”) on a single server; (iv) the default cyclic barrier available in Crucial, with
a single server instance; and (v) a resilient, poll-based (P) barrier implementing
the algorithm in [85] on a 3-node cluster with replication.

To draw this comparison, we measure the time needed to exit 1000 barriers
back-to-back for each approach. An experiment is run 10 times. Figure 4.8 reports
the average time to cross a single barrier for a varying number of cloud functions.

The results in Figure 4.8 evidence that the single server solutions, namely
Crucial and Redis, are the fastest approaches. With 1800 threads, these barriers
are passed after waiting 68 ms on average. The fault-tolerant barriers (Crucial

4.6. Evaluation 101

(P) and ZooKeeper) create more contention, incurring a performance penalty
when the level of parallelism increases. With the same number of threads, pass-
ing the poll-based barrier of Crucial takes 287 ms on average. ZooKeeper re-
quires twice that time. The solution using Amazon SNS and SQS is an order of
magnitude slower than the rest.

It is worth noting the difference between the programming complexity of each
barrier. Both barriers implemented in Crucial take around 30 lines of basic Java
code. The solution using Redis has the same length, but it requires a proper man-
agement of the connections to the data store as well as the manual creation/dele-
tion of shared keys. ZooKeeper substantially increases code complexity, as pro-
grammers need to deal with a file-system-like interface and carefully set watches,
requiring around 90 lines of code. Finally, the SNS and SQS approach is the
most involved technique of all, necessitating 150 lines of code and the use of two
complex cloud service APIs.

A concurrency problem

Thanks to its coordination capabilities, Crucial can be used to solve complex
concurrency problems. To demonstrate this feature, we consider the Santa Claus
problem [171]. This problem is a concurrent programming exercise in the vein
of the dining philosophers, where processes need to coordinate in order to make
progress. Common solutions employ semaphores and barriers, while others, ac-
tors [36].

Problem. The Santa Claus problem involves three sets of entities: Santa Claus,
nine reindeer and a group of elves. The elves work at the workshop until they
encounter an issue that needs Santa’s attention. The reindeer are on vacation
until Christmas eve, when they gather at the stable. Santa Claus sleeps and can
only be awakened by either a group of three elves to solve a workshop issue, or by
the reindeer to go delivering presents. In the first case, Santa solves the issues,
and the elves go back to work. In the second, Santa and the reindeer execute the
delivery. The reindeer have priority if the two situations above occur concurrently.

Solution. Let us now explain the design of a common solution to this problem [36].
Each entity (Santa, elves, and reindeer) is a thread. They communicate using two
types of coordination primitives: groups and gates. Elves and reindeer try to
join a group when they encounter a problem or Christmas is coming, respectively.
When a group is full —either including three elves or nine reindeer—, the entities
enter a room and notify Santa. A room has two gate objects: one for entering
and one for exiting. Gates act like barriers, and all the entities in the group wait

102 Chapter 4. Serverless Stateful Computation

Table 4.3: Santa Claus problem’s completion time (in seconds) on a single machine and
using Crucial.

Threads Threads + DSO Crucial
p50 20.15 20.91 21.97
p99 21.09 22.03 22.66

Overhead − 3.8% 9.0%

for Santa to open the gate. When Santa is notified, he looks whether a group
is full (either of reindeer or elves, prioritizing reindeer). He then opens the gate
and solves the workshop issues or goes delivering presents. This last operation is
repeated until enough deliveries, or epochs, have occurred.

We implemented the above solution in three flavors. The first one uses plain
old Java objects (POJOs), where groups and gates are monitors and the entities
are threads. Our second variation is a refinement of this base approach, where the
coordination objects are stored in the DSO layer. The conversion is straightfor-
ward using the API presented in Section 4.3. In particular, the code of the objects
used in the POJO solution is unchanged. Only adding the @Shared annotation is
required. The last refinement consists in using Crucial’s cloud threads instead
of the Java ones.

Evaluation. We consider an instance of the problem with 10 elves, 9 reindeer and
15 deliveries (epochs of the problem). Table 4.3 presents the completion time for
each of the above solutions.

The results in Table 4.3 show that Crucial is efficient in solving the Santa
Claus problem, being at most 9% slower than a single-machine solution. In detail,
storing the group and gate objects in Crucial induces an overhead of around 4%
on the completion time. When cloud threads are used instead of Java ones, a
small extra time is further needed —less than a second. This penalty comes from
the necessary remote calls to the FaaS platform to start computation.

Takeaways The fine-grained coordination capabilities of Crucial permit cloud
functions to coordinate efficiently. The coordination primitives available in the
framework fit iterative tasks well and perform better than state-of-the-art solu-
tions at large scale while being simpler to use. This allows Crucial to solve
complex concurrency problems efficiently.

4.6. Evaluation 103

4.6.4 Smile library

The previous section presented the portage to serverless of a solution to the Santa
Claus problem. In what follows, we further push this logic by considering a
complex single-machine program. In detail, we report on the portage to server-
less of the random forest classification algorithm available in the Smile library.
Smile [118] is a multi-threaded library for machine learning, similar to Weka [88].
It is widely employed to mine datasets with Java and contains around 165K SLOC.
In what follows, we first describe the steps that were taken to conduct the portage
using Crucial. Then, we present performance results against the vanilla version
of the library.
Portage. Porting smile.classification.RandomForest consists in adapting the
random forest classification algorithm [40] with the help of our framework. In the
training phase, this algorithm takes as input a structured file (commonly, .csv
or .arff) which contains the dataset description. It outputs a random forest,
i.e., a set of decision trees. During the classification phase, the forest is used to
predict the class of the input items. Each decision tree is calculated by a training
task (Callable). The tasks are run in parallel on a multi-core machine during
the training phase. At the same time, the algorithm also extracts the out-of-bag
(OOB) precision, that is the forest’s error rate induced by the training dataset.

To perform the portage, we take the following three steps. First, a proxy is
added to stream input files from a remote object store (e.g., Amazon S3). This
proxy lazily extracts the content of the file, and it is passed to each training
task at the time of its creation. Second, the training tasks are instantiated in
the FaaS platform. With Crucial, this transformation simply requires calling a
ServerlessES object in lieu of the Java ExecutorService. Third, the shared-
memory matrix that holds the OOB precision is replaced with a DSO object. This
step requires to change the initial programming pattern of the library. Indeed,
in the original application, the RandomForest class creates a matrix using the
metadata available in the input file (e.g., the number of features). If this pattern
is kept, the application must load the input file to kick off the parallel computation,
which is clearly inefficient. In the portage, we instead use a barrier to synchronize
the concurrent tasks. The first task to enter the barrier is in charge of creating
the matrix in the DSO layer.6

For performance reasons, Smile uses Java arrays (mono or multi-dimensional)
and not object-oriented constructs (such as ArrayList). As pointed out previ-
ously in Section 4.3.3, it is not possible to build proxies for such objects in Java
without changing the bytecode generated during compilation. Thus, the portage

6This pattern is reminiscent of a Phaser object in Java.

104 Chapter 4. Serverless Stateful Computation

soil
usps

credit-card
click

0

50

100

150

200

250

R
un

ni
ng

tim
e

(s
) Smile-8

Smile-160
Crucial

(a)

1 10 50 100 200
Number of trees

0

20

40

60

80

100

R
un

ni
ng

tim
e

(s
)

0.96

0.98

1.00

A
U

C

(b)

Figure 4.9: Smile portage. (a) Performance per dataset using 50 trees. (b) Varying
the number of trees for the credit-card dataset [140].

necessitates to transform these arrays into high-level objects. These objects are
then replaced with their Crucial counterparts.

Overall, the portage modifies 378 SLOC in the Smile library (version 1.5.3).
This is less than 4% of the original code base to run the random forest algorithm.

Evaluation. In Figure 4.9, we compare the vanilla version of Smile to our portage
to Crucial. To this end, we use 4 datasets: (soil) is built using features ex-
tracted from satellite observations to categorize soils [72]; (usps) contains normal-
ized handwritten digits scanned from envelopes by the U.S. Postal Service [130];
(credit-card) is a set of both valid and fraudulent credit card transactions [140];
(click) is a 1% balanced subset of the KDD 2012 challenge (Task 2) [92].

We report the performance of each solution during the learning phase. As
previously, Crucial is executed atop AWS Lambda. The DSO layer runs with
𝑟 𝑓 = 2 in a 3-node (4 vCPU, 16 GiB of RAM) Kubernetes cluster. For the
vanilla version of Smile, we use two different setups: an hyperthreaded quad-core
Intel i7-8550U laptop with 16 GiB of memory (tagged Smile-8 in Figure 4.9), and
a quad-Intel CLX 6230 hyperthreaded 80-core server with 740 GiB of memory
(tagged Smile-160 in Figure 4.9).7

As expected for small datasets (soil and usps), the cost of invocation out-
weights the benefits of running over the serverless infrastructure. For the two
large datasets, Figure 4.9a shows that the Crucial portage is up to 5× faster.

7The JVM executes with additional flags (+XX:+UseNUMA -XX:+UseG1GC) to leverage
the underlying hardware architecture.

4.6. Evaluation 105

Interestingly, for the last dataset the performance is 20% faster than with the
high-end server.

In Figure 4.9b, we scale the number of trees in the random forest, from a
single tree to 200. The second y-axis of this figure indicates the area under the
curve (AUC) that captures the algorithm’s accuracy. This value is the average
obtained after running a 10-fold cross-validation with the training dataset. In
Figure 4.9b, we observe that the time to compute the random forest triples from
around 10 to 30 s. Scaling the number of trees helps improving classification.
With 200 trees, the AUC of the computed random forest is 0.9998. This result
is in line with prior reported measures [140] and it indicates a strong accuracy of
the classifier. Figure 4.9b indicates that training a 200-trees forest takes around
30 s with Crucial. This computation is around 50% slower with the 160-threads
server. It takes 20 minutes on the laptop test machine (not shown in Figure 4.9b).

Takeaways Overall, the above results show that the portage is efficient, bringing
elasticity and on-demand capabilities to a traditional monolithic multi-threaded
library. We focused on the random forest classification algorithm in Smile, but
other algorithms in this library can be ported to FaaS with the help of Crucial.

4.6.5 Usability of Crucial

This section evaluates how Crucial simplifies the writing of stateful serverless
applications and their deployment and management in the cloud.

Data availability

Our first experiment assesses that Crucial indeed offers high availability to data
persisted in the DSO layer. To this end, the membership of DSO is changed
during the execution of the serverless 𝑘-means. Figure 4.10 shows a 6-minute
run during which inferences are executed with the model trained with 𝑘-means
in Section 4.6.2. The model is stored in a cluster of 3 nodes with 𝑟 𝑓 = 2. The
inferences are performed using 100 cloud threads. Each inference executes a read
of all the objects in the model, i.e., the 200 centroids.

During the experiment, at 120 s and 240 s, we crash and add, respectively, a
storage node to the DSO layer. Figure 4.10 shows that our system is elastic and
resilient to such changes. Indeed, modifications to the membership of the DSO
layer affect performance but never block the system. The (abrupt) removal of
a node lowers performance by 30%. The initial throughput of the system (490
inferences per second) is restored 20 s after a new storage node is added.

106 Chapter 4. Serverless Stateful Computation

0 100 200 300
Time (s)

0

200

400

600
T

hr
ou

gh
pu

t

Node crashes Node joins

Figure 4.10: Inferences per second performed on a 𝑘-means model for 6 minutes. Up
to 100 concurrent FaaS functions connecting to the shared model on up to 3 DSO nodes
with 𝑟 𝑓 = 2. Note the FaaS cold start at the beginning.

Notice that handling catastrophic (or cascading) events is possible by running
DSO across several availability zones, or even datacenters. In such cases, SMR can
be tailored to accommodate with the increased latency between data replicas [134].
Evaluating these geo-distributed scenarios is, however, beyond the scope of this
work.

Programming simplicity

Each of the applications used in the evaluation is initially a single-machine pro-
gram. Table 4.4 lists the modifications that were necessary to move each program
to serverless with Crucial. The differences between the single-machine, parallel
code and its serverless counterpart are small. In the case of Smile, as mentioned
earlier, they mainly come from the use of low-level non-OOP constructs in the
library (e.g., Java arrays). For the other programs, e.g., the logistic regression
algorithm detailed in Section 4.6.2, the changes account for less than 3%.

Starting from a conventional OOP program, Crucial requires only a handful
of changes to port it to FaaS. We believe that this smooth transitioning can help
everyday programmers to start harvesting the benefits of serverless computing.

Cost comparison

Although one may argue that the programming simplicity of serverless computing
justifies its higher cost [98], running an application serverless should not signifi-
cantly exceed the cost of running it with other cloud appliances (e.g., VMs).

4.6. Evaluation 107

Table 4.4: Lines of code changed in each application to move it to FaaS with Crucial.

Application Total lines Changed lines
Monte Carlo 44 2 (4.5%)
Mandelbrot 88 3 (3.4%)
Logistic regression 430 10 (2.3%)
𝑘-means 329 8 (2.4%)
Santa Claus problem 255 15 (5.9%)
Random Forest 8 9882 378 (3.8%)

Table 4.5 offers a cost comparison between Spark and Crucial based on the
experiments in Section 4.6.2. The first two columns list the time and cost of the
entire experiments, including the time spent in loading and parsing input data,
but not the resource provisioning time. The last column lists the cost that can
be attributed to the iterative phase of each algorithm. To compare fairly the two
approaches, we only consider the pricing for on-demand instances.

With the current pricing policy of AWS [14], the cost per second of Crucial
is always higher than Spark: 0.25 and 0.28 cents per second for 1792 MiB and
2048 MiB function memory, respectively, against 0.15 cents per second. Thus,
when computation dominates the running time, as in 𝑘-means clustering with
𝑘 = 200, the cost of using Crucial is logically higher. This difference disappears
when Crucial is substantially faster than Spark (e.g., 𝑘 = 25).

To give a complete picture of this cost comparison, there are two additional
remarks to make here. First, the solution provided with Crucial using 80 con-
current AWS Lambda functions employs a larger aggregated bandwidth from S3
than the solution with Spark. This reduces the cost difference between the two ap-
proaches. Second, as pointed in Section 4.6.1, Crucial users only need to pay for
the execution time of each function, and not the time the cluster remains active.
This includes bootstrapping the cluster as well as the necessary trial-and-error
processes found, for instance, in machine learning training or hyper-parameter
tuning [176].9

Takeaways The programming model of Crucial allows to easily write conven-
tional object-oriented applications for serverless. Starting from a single-machine
code, the changes are minimal. In particular, the distributed shared objects (DSO)

8Transitive closure of the dependencies of smile.classification.RandomForest in Smile.
9Provisioning the 11-machine EMR cluster takes 2 min (not billed) and bootstrapping requires

an extra 4 min. A DSO node starts in 30 s.

108 Chapter 4. Serverless Stateful Computation

Table 4.5: Monetary costs of the experiments

Total time Total cost Iterations cost
Logistic
regression

Spark 192 s $0.282 $0.111
Crucial 122 s $0.302 $0.154

𝑘-means
(𝑘 = 25)

Spark 168 s $0.246 $0.050
Crucial 87 s $0.244 $0.057

𝑘-means
(𝑘 = 200)

Spark 330 s $0.484 $0.288
Crucial 234 s $0.657 $0.492

layer offers the exact same semantics for state sharing and coordination as a con-
ventional multi-threaded library (e.g., java.util.concurrent). Being serverless,
applications written with Crucial are scalable. Moreover, they execute at a com-
parable cost to cluster-based solutions without high upfront investment.

4.7 Chapter summary
This chapter presents Crucial, a system to program highly concurrent stateful
serverless applications. Crucial can be used to construct demanding serverless
programs that require fine-grained support for mutable shared state and coordi-
nation. We show how to use it to implement applications such as traditional data
parallel computations, iterative algorithms, and coordination tasks.

Crucial is built with an efficient disaggregated in-memory data store and a
Function-as-a-Service (FaaS) platform. Unlike other works, such as Faasm [160]
and Cloudburst [164], Crucial can run on any standard FaaS platform, simply
requiring the existence of a Java runtime.

Our evaluation shows that, for two common machine learning (ML) algo-
rithms, Crucial achieves superior or comparable performance to Apache Spark.
Crucial is also a good fit for function coordination, outperforming ZooKeeper
in this task. In particular, it can solve efficiently complex coordination problems
despite the inherent costs of its disaggregated design. For data sharing across
cloud functions, Crucial compares favorably against storage alternatives such as
Redis.

Our framework allows to move traditional single-machine, multi-threaded Java
programs to serverless. We use it to port Smile, a state-of-the-art multi-threaded

4.7. Chapter summary 109

ML library. The portage achieves performance comparable to the one of a ded-
icated high-end server, while providing elasticity and on-demand capabilities to
the application.

Crucial offers conventional multi-threaded abstractions to the programmer.
In our evaluation, less than 6% of the application code bases differ from standard
solutions using plain old Java objects. We believe that this simplicity can help to
broaden the horizon of serverless computing to unexplored domains.

Chapter 5

Serverless Ephemeral
Computational Storage

Data-shipping is a well-known problem in serverless computing. Some works
optimize data transfers in the disaggregated architecture and others modify the
FaaS platform with caching capabilities. The former does not lessen data-shipping
problems. The latter reduces far data transfers but interferes with FaaS properties
on elasticity and low latency. This is especially relevant with large data that either
complicates function scheduling or easily overflows the cache.

This chapter explores an alternative approach where FaaS remains unchanged,
and we push the appropriate (lightweight) computations to the storage tier. For
this, we design Glider, the first serverless system for in-storage ephemeral state-
ful computation. We prototype this approach and evaluate its benefits. Glider
effectively eliminates part of the intermediate data in serverless data processing,
reduces network complexity, and diminishes data transfer.

A paper with the results of this chapter is in process of publication.

112 Chapter 5. Serverless Ephemeral Computational Storage

5.1 Introduction
On one hand, serverless computing is constantly gaining traction for data ana-
lytics, machine learning, and other distributed computations due to the ability
of serverless functions services (FaaS) to provide compute units at large scale,
low latency, and fine granularity. This model enables cloud providers and their
users to efficiently model applications to reduce operational costs (users manage
less resource complexity), monetary expenses (no idle resources are billed), and
environmental impact (cloud resources are better utilized).

On the other hand, the stateless, ephemeral nature of serverless functions
forces the distributed computations atop them into the traditional two-tiered
model with “separation of concerns” between the compute and storage clusters.
While the model presents advantages on scalability, it resorts into heavy data
transit between components. This is known as a data-shipping architecture.

5.1.1 Scope and challenges

In data processing workloads, a data-shipping architecture generates huge traf-
fic of intermediate data, which puts big pressure on the network and commonly
becomes a bottleneck in commodity hardware. Additionally, temporary data re-
quires a versatile storage solution to effectively handle its variability [166]. This
problem is especially present in serverless computing [83, 141, 150]. Serverless
workers are stateless and short-lived, so, contrary to traditional computation sys-
tems like Spark or Flink, they cannot keep data in memory throughout different
computation stages. Additionally, their memory and computation power are lim-
ited, which means that jobs may need further partitioning and extra stages with
a resulting increase in intermediate data. To top it off, network connections for
serverless functions have limited bandwidth [108, 177].

A solution to serverless data-shipping is still unavailable on cloud platforms.
Research projects and tools to orchestrate functions [64, 65, 98] try to allevi-
ate the problem by simplifying programming and data dependencies. However,
they do not solve its fundamental issues, i.e., far network transfers of large data.
Some works explore locality in functions [3, 160] and different forms of caching
data within the FaaS platform [136, 146, 164, 186]. Unfortunately, they require
modification of the FaaS platform and are limited to small amounts of data. Fur-
thermore, completely merging storage and computation in a single system has
been studied before with results that discourage such an approach [46, 148].

Past research on active storage studies data-shipping in cluster computing [80,
132, 148]. The key idea is to perform computation close to the data, but instead of

5.1. Introduction 113

adding storage to the computation cluster, ship computation to the storage tier.
In particular, these systems offload certain operations (data-bound tasks) to small
workers deployed directly in the storage system with the objective to minimize the
amount of data transferred between tiers. They exhibit impressive data movement
reduction and the corresponding benefits on performance and cost.

This concept has not been applied to serverless computing, nor with tempo-
rary data, which presents several novel challenges. First, a joint management of
ephemeral data and computation in the same system requires to correctly iso-
late them to avoid resource contention, but still allow their synergy in an elastic
system. Second, the restrictions in serverless computing make the model heavily
benefit from stateful computation in the storage (such as aggregations or data
shuffling). This is not possible with the stateless interceptors we find in existing
active storage. Third, serverless workers have modest resources and data pro-
cessing workloads handle large data. Thus, the storage must provide an effective
interface to access data and compute elements that does not overload the workers.

5.1.2 Contributions

In this chapter, we explore a solution to serverless data-shipping with a novel cloud
storage service that features serverless in-storage ephemeral stateful computation.
To fully exploit the advantages of serverless computing, we keep the FaaS platform
unchanged and follow a disaggregated model where we offload the appropriate
(data-bound) computations to a storage system designed for temporary data.

With this idea, we design Glider, a storage system that integrates ephemeral
stateful computation with ephemeral data and cooperates with existing serverless
functions to perform big data processing jobs. To achieve it, Glider faces the above
challenges of in-storage computation with three principles: storage spaces, storage
actions, and a streaming I/O interface. Storage spaces encapsulate resources and
allow to equally manage storage and compute resources elastically. Storage actions
are a storage element integrated in the storage namespace and allow to perform
stateful computation near the data. The streaming I/O is a key interface element
to allow serverless workers and storage actions to process a flow of data through
a chain of chunks and be efficient with their resources.

We evaluate Glider through several applications. The experiments show how
our solution effectively reduces the amount of temporary data that travels through
the network, it decreases the number of necessary storage accesses, and lowers
overall storage utilization. Consequently, Glider significantly speeds up the per-
formance of data processing applications.

114 Chapter 5. Serverless Ephemeral Computational Storage

5.2 Background and motivation
In this section, we analyze the temporary data that is generated during data
processing workloads and the peculiarities that arise when using serverless services
to perform these jobs. Then, we introduce the problem of data-shipping in the
serverless computing model. Finally, we provide an overview of our solution with
Glider, and review the general challenges that it encounters.

5.2.1 Serverless and temporary data

A large and important part of the data that is transferred in analytics workloads
is temporary. For temporary data, we refer to the intra-job data that is created,
handled, or consumed during processing and, thus, is not relevant after the job
completes. In other words, temporary data is short-lived and easy to regenerate.
This excludes the original input and final output application data.

Supporting temporary data requires a dedicated solution that correctly han-
dles its peculiarities. For instance, the variability in size and access patterns that
presents ephemeral data need a versatile system that embraces these irregular res-
idents. Some data may require highly performant storage (e.g., in-memory) while
others are best stored in cost-efficient hardware (e.g., HDD or SSD). We can find
this kind of specialized storage systems in the context of cluster computing [166].

In serverless computing, temporary data is especially present. Traditional
cluster computing may communicate several workers to directly pass intermedi-
ate data during execution or keep information in their memory space for future
computation stages. Unfortunately, this is not possible with serverless functions.
Their transient nature and inability to communicate directly denies them to cache
data through stages or deliver it to the next function directly. Instead, functions
are forced to ship data through far storage.

Additionally, the common choice to relay data in these applications is a cloud-
managed object store service, which is slow for some types of temporary data [99,
166]. More performant storage solutions are not available in the serverless cloud.
In fact, achieving serverless properties for high-performance storage (in-memory)
is not trivial. One recurrent problem in this endeavor is fine-grained elasticity
of in-memory stateful elements, an open research topic with some recent work
tackling its challenges [105, 109, 164]. Nonetheless, there are more important
challenges in serverless data processing that cannot be solved only with faster
storage. The fundamental problem is the constant movement of temporary data
between serverless functions and the storage service, which is a by-product of a
data-shipping architecture.

5.2. Background and motivation 115

5.2.2 Data-shipping in serverless

Serverless data processing applications produce large amounts of data that must
be transferred back and forth between compute and storage resources. We refer
to this pattern as a data-shipping architecture, and it is a well-known problem
in the literature due to the pressure it exerts on the network. The peculiarities
of serverless workers (e.g., limited memory and compute power, short lifespan,
reduced bandwidth, etc.) increase the amount of data transfers needed and their
cost [83], resulting in sub-par performance for applications. Here we shortly dis-
cuss different approaches to this problem. For an extended review of these topics,
we refer the reader to Section 2.3.

In a first instance, several works [98, 141, 150] optimize these data dependen-
cies with high-performance storage systems or intelligent data partitioning and
distribution with the objective to achieve the best cost to performance tradeoff.
Nonetheless, they fail to reduce the amount of data transfers and thus suffer the
performance and monetary costs of shipping lots of data.

In light of this, other projects decide to fully combine a FaaS platform with
a storage solution. We find several instances of this idea, from functions sharing
memory [3, 160] to FaaS platforms implemented on top of cache stores [136,
146, 164, 186]. Unfortunately, this model does not work well for data processing
applications. We have already seen in the literature that compute and storage
tiers must be disaggregated in order to correctly scale to distinct demands and
isolate their performance to avoid contention [46, 148].

A traditional solution to data-shipping is to ship code to data instead. That
is, to offload computation into the storage system with the objective to minimize
the amount of data transferred between clusters. Active storage research [80,
132, 148] exhibits impressive reduction of data movement in traditional cluster
applications and the corresponding benefits on performance and cost. However,
these solutions are not prepared to support serverless computing. As we have
seen, serverless data processing is more intensive on temporary data and requires
new considerations. We explore them in Section 5.2.4.

5.2.3 An overview of Glider

In this chapter, we present Glider, a novel service model for ephemeral computa-
tional storage. Building on past research and ideas (see the different approaches
to data-shipping in Section 2.3 and Figure 2.1), Glider explores a new approach
to serverless data processing. In essence, the goal is to let data “glide” through
the computation pipeline, instead of jumping back and forth between services. A
diagram of Glider’s approach appears in Figure 5.1. It affirms that compute and

116 Chapter 5. Serverless Ephemeral Computational Storage

λ

λ

StorageCompute

Figure 5.1: Glider’s approach to data-shipping.

storage must be disaggregated so that they are individually managed to correctly
support their particular demands. To wit, serverless functions must be able to
spawn and expire without depending on stateful components. Previous research
on active storage [46, 148] has shown us that we cannot fully attach data and com-
putation. Therefore, in order to reduce the amount of data movements, we must
ship code to storage instead. In other words, we should offload the appropriate
computations to the storage tier. We have also seen that temporary data requires
a specialized solution to handle its peculiarities. In this sense, Glider proposes to
add ephemeral computation into an ephemeral storage solution.

5.2.4 Requirements and challenges

To integrate compute and storage within the same system and face the data-
shipping problem in serverless, we study the following three requirements.

Synergize compute and storage Running computation within the storage
tier is tricky. This is especially relevant when the storage system is deployed as
a multi-tenant service. If the compute operations grow uncontrolled on storage
resources, they can create contention and highly impact performance for basic
storage operations and other users [46, 148]. Offering a closed library of storage
operations may enable such control but pushing meaningful operations to storage
requires allowing users to define them in arbitrary code. Consequently, arbitrary
operations must be correctly isolated to avoid system performance degradation
and still exploit data locality to smooth out the problems of data-shipping. A
serverless system requires special caution in this matter, since the fine-grained
elasticity expected from it restricts how resources can be managed.

5.2. Background and motivation 117

Stateful computation Typically, in-storage computation [132, 148] intercepts
data accesses and executes operations in the data path. These ephemeral com-
putations exist only during the operation, and they are anonymous and stateless.
While certainly convenient, they are also limited in usability. For instance, multi-
ple data accesses trigger duplicate computations and, to perform an aggregation,
the application must move all data twice. This happens frequently in serverless
computing due to its transient workers without direct communication. Using com-
putation on storage to aggregate data and other complex patterns heavily reduces
the amount of network transfers in serverless data processing workloads (we prove
this in Section 5.7). However, this is not possible with just in-line stateless proces-
sors and there is no existing system that offers ephemeral stateful computational
elements in storage.

Large intermediate data Intermediate data in data processing workloads can
be very large, such as when shuffling in MapReduce jobs. These data can be
very hard to handle correctly. For instance, traditional in-memory caches are not
prepared to support large amounts of data. For this reason, there exist special-
ized systems to support temporary data efficiently [166]. In serverless comput-
ing, this is especially relevant. On one hand, the limited resources of serverless
workers prohibits them to load big files entirely. On the other hand, their often-
limited network burthens them with long transmission times. In a similar way,
in-storage ephemeral computation must also handle large data effectively. These
ephemeral compute elements should not keep large data in their own space to
remain lightweight and easy to manage.

Other considerations We note that, for temporary data, usual storage fea-
tures such as durability and fault-tolerance are not a priority [166]. Durability is
mostly irrelevant for short-lived intermediate data. In the case of fault-tolerance,
although generally useful, it is often implemented at the level of the compute
framework (e.g., a function orchestrator in serverless), hinders management at
the storage system, and harms its performance.

There are previous projects in the literature that propose serverless ephemeral
storage systems. Pocket [109] builds automatic scaling and multi-tenant manage-
ment into an ephemeral storage solution. It provides it with the capacity to adapt
its size dynamically and precisely for serverless data processing jobs as they come
and go. Its evaluation shows huge improvements for storing intermediate data
against existing storage solutions in the cloud. Jiffy [105] builds upon Pocket and
transforms the system into a scalable remote memory for serverless functions to
use as a shared space that grows and shrinks on demand. Glider is orthogonal

118 Chapter 5. Serverless Ephemeral Computational Storage

to these projects and it may benefit from their contributions to make it elastic,
multi-tenant, and dynamic. However, they do not address the problems derived
from data-shipping. Therefore, in this work we focus our description on the novel
challenges presented before.

5.3 Glider
We present Glider, a novel serverless service model for ephemeral computational
storage. In essence, Glider is a storage system dedicated to large temporary data
that also runs ephemeral computation within it. The main goal is to exploit the
synergy of both elements coexisting in the same system to counteract the issues
presented by the data-shipping architecture adopted in serverless data processing
workloads. Fundamentally, Glider is built as a companion to serverless computing
(FaaS) services, and it allows intermediate data to “glide” through the different
computation stages, instead of constantly jumping back and forth between com-
pute and storage services.

Against the effects of data-shipping, the ephemeral computational storage idea
of Glider allows to (i) reduce the amount of data transferred (bytes through net-
work), (ii) decrease the number of data transfers (connections to storage), and
(iii) lower storage utilization (data stored).

Glider must face the challenges introduced above for integrating computa-
tional capacity to a storage system. To wit, compute and storage resources must
be correctly isolated, ephemeral computation must be stateful, and it also must
be prepared to handle large data easily. To resolve these challenges, Glider follows
these three principles: (i) compute and storage resources join the system as iso-
lated storage spaces; (ii) computation is encapsulated in storage actions, arbitrary
stateful objects; and (iii) compute and storage elements share a common streamed
I/O interface.

Storage spaces In Glider, storage spaces allow to manage compute and stor-
age resources indistinctly within the system. Elementally, users manage stor-
age namespaces, a logical structure of storage elements (e.g., files or directories).
Namespaces and the data they contain are private to their owners. The capacity of
each namespace is dynamic and adapts to demand through the joining and leaving
of storage spaces. A storage space is a set of isolated resources that contributes a
certain amount and type of storage capacity to a determinate namespace. Some
storage spaces contribute data capacity, while others contribute compute capacity.

5.3. Glider 119

This brings two important benefits. First, they allow to easily integrate compu-
tation resources into the storage system. This enables a close synergy between
compute and data elements while keeping both isolated to avoid performance
interferences. Second, they build one of the fundamental pillars in serverless ser-
vices: fine-grained resource management. Storage spaces may join and leave the
system very quickly (since they only hold ephemeral elements), allowing it to
match application demand and achieve better resource utilization.

Storage actions The computational elements that Glider incorporates into the
storage system are called storage actions. Actions are integrated into the storage
namespace at the same level of other elements such as files or directories. In this
sense, they are handled as any other storage element in the system. In particular,
actions have a name or identifier, and applications may use it to directly read or
write into the action, or to organize them in the namespace. Furthermore, ac-
tions are automatically managed and distributed by the system in the same way as
other elements. This heavily simplifies its usage for developers and management
for the service. The logic of an action is arbitrary code provided by the users.
Action definitions are deployed into the system beforehand, and applications in-
stantiate them as needed in a storage namespace. The action code is triggered
when accessed for the typical read and write operations, where it can process
data in and out as desired, access other storage elements, or even utilize remote
services. Thanks to being part of the storage namespace, actions are stateful and
can be directly addressed multiple times. In consequence, an operation on an
action may depend on the results of a previous one, which makes them great for
aggregating or caching data, among many other uses. Like any other element in
Glider, actions are still ephemeral, as they represent intermediate data processing
stages, and should not hold long term data.

Streamed I/O Data processing workloads handle huge amounts of data, and
the temporary data that is generated during a job can typically grow even bigger.
Transferring and processing so much data takes a lot of time and space, thus being
able to stream it in small chunks is essential. This is especially true for serverless
computing. First, serverless workers are typically small and cannot hold many
data at the same time. The ability to simply process the information through I/O
streams allows to process it with fewer and smaller workers, which greatly reduces
cost. Second, serverless workers often have limited network bandwidth and may
invest much time downloading and uploading data. With I/O streams, workers
process and transfer data in parallel, speeding up execution time. Therefore,
Glider defines a stream-based I/O interface for all the storage elements, including

120 Chapter 5. Serverless Ephemeral Computational Storage

actions. In the case of actions, this adds extra benefits. When a worker sends the
result of its execution to an action through a stream as it generates it, the action
starts its own light processing as it receives it. Generally, this opens the possibility
to parallelize stages in the data processing pipeline in a simple and straightforward
way to improve the overall performance. This kind of I/O streaming has been
adopted recently in the cloud by S3 Object Lambda [17] with a similar objective.
Object Lambda, however, only intercepts accesses to objects in the storage, its
functions are stateless and anonymous, and they are completely decoupled from
the storage system in a different layer.

5.3.1 What code should we ship?

When offloading computation to storage, we face an important question: which
tasks are “appropriate” to offload? From a utility point of view, our objective is
that these tasks reduce the amount of data that travels between tiers. Besides, we
may argue that these tasks should be lightweight and transient to facilitate their
management within the storage system. With this in mind, we clearly identify
two types of computation: compute-bound and data-bound tasks. Compute-
bound tasks truly shine in the dedicated compute tier, where they can be freely
scaled, and would be heavily hurt from being attached to storage. Examples
of these tasks are those that perform data crunching and heavy mathematical
computations. In contrast, data-bound tasks are the ones that benefit most from
near data computation and have the potential to reduce the amount of data
transfers in an application. These are data management tasks. Therefore, it
makes sense to offload data-bound computations to storage, while we should never
do so with compute-bound tasks. In the case of data-bound tasks, traditional
active storage only supports stateless tasks such as data filtering, transformation,
or simple queries. We have seen that serverless data processing benefits from
stateful computation too. Examples of potential stateful data-bound tasks are
aggregations, data shuffling, indexing, or interactive queries.

5.3.2 Using storage actions

Here we provide a general overview of how a developer interacts with a Glider
service. Section 5.5 presents a more detailed explanation of using our concrete
implementation of the model.

The Glider model is, in essence, that of a common cloud-managed storage
service. Users manage their storage namespace, where they can add or remove
elements following a certain structure. Applications only interact with storage
elements, which have typical access operations for reading, writing, or removing

5.4. System design 121

them (e.g., CRUD). Storage spaces are managed by the Glider service, and never
by users. However, a cloud vendor must put some limitations to using storage
spaces (such as resource limits or timeouts) in order to efficiently manage re-
sources. To this end, a service may allow users to configure some parameters
(e.g., size, compute power, timeout) to adjust the behavior of the system when
managing the resources for a specific storage namespace.

To use storage actions, programmers should first code its logic by following
an interface. The interface defines a set of functions or object methods that the
developer may implement as desired. Each of these code elements will run for
different operations performed on the action. The main operations are reading
and writing, for which the application utilizes I/O streams.

Action definitions (the code) must be deployed into the service. This procedure
is similar to deploying a function in a FaaS platform. Users upload a package and
register each action so that they can reference them later for instantiation. The
service may also allow certain configuration parameters for that action.

Actions are instantiated as any other storage element. Developers create them
by providing an identifier within the storage namespace and a reference to the ac-
tion definition they wish to instantiate. Likewise, applications can get references
to existing actions through their identifier. Action deletion works similarly and
may choose to wait for on-going operations to finish or abort them. Data opera-
tions on actions are identical to other storage elements. The application obtains
an I/O stream that it may use to read/write data from/to the action.

5.4 System design
The core principles of Glider based on storage spaces, storage actions, and a
streamed I/O interface can be put into practice in several ways. Here we present
our concrete proposal, which we use to evaluate our claims.

We create a design for Glider by extending a multi-tiered, high-performance
ephemeral storage architecture: the NodeKernel [166]. We choose NodeKernel
because it is extensible and specialized for ephemeral data in data processing
workloads. But more importantly, its design can easily be expanded for managing
multi-tenant deployments and allows to grow and handle resources elastically at
fine granularity [109]. This makes it a great substrate for a serverless service.

With Glider, we integrate into NodeKernel the concepts of storage spaces for
computation, actions, and their streamed I/O interface. This adds multiple desire-
able benefits for serverless data processing applications. Near-data computation
reduces the problems derived from the data-shipping architecture taken by the

122 Chapter 5. Serverless Ephemeral Computational Storage

serverless model. The statefulness of actions allows to redistribute computation
for more efficient pipelines. And the I/O interface allows to process large data
with modest sized actions and parallelize tasks.

5.4.1 NodeKernel in brief

Glider builds upon the NodeKernel architecture, a state-of-the-art storage archi-
tecture specialized for temporary data in traditional data processing workloads.
Here we summarize the key components of the base architecture before detailing
the additions that Glider contributes. For a complete description, we refer the
reader to its original publication [166].

Storage semantics The higher-level storage semantics in the architecture are
provided as data “nodes” and organized in a hierarchical namespace. Nodes are
defined as specialized data types implementing a common interface with basic
operations to handle data (e.g., read, append, size, etc.) or structure (e.g.,
getPath, addChild, etc.). Each node can hold data of arbitrary size. The gen-
eral organization is managed by a shared storage kernel, which is responsible for
allocating storage resources for nodes, handling the hierarchical namespace, and
implementing data access operations. Applications connect to the kernel to cre-
ate, look up, remove, and attach or fetch data to/from nodes. To identify nodes
within the storage hierarchy, they are given path names similarly to a file system.

Data nodes are extensible and can provide different specialized data access op-
erations with multiple implementations of the common node interface. Likewise,
node types may restrict the way they can be stacked. For instance, a certain node
type may only allow a closed set of types as its children (e.g., a table can only
hold key-value pairs). As a basis, the NodeKernel architecture defines five cus-
tom node types that semantically represent data (File and KeyValue), containers
(Directory and Table), or specialized structures (Bag).

System architecture The NodeKernel architecture manages data in a set of
metadata and storage servers. Internally within the system, data is handled in
blocks. A block is a fixed sequence of bytes residing in a storage server. The
nodes in the storage hierarchy present their data as a byte stream that abstracts
a sequence of blocks. The metadata servers administer the hierarchical namespace
and the fleet of blocks. Metadata servers may distribute their work by partition-
ing the namespaces, allowing to scale the system if needed. The storage servers
allocate storage blocks and register them on a metadata server. In essence, the
metadata servers maintain a list of free and used blocks (and their mapping to

5.4. System design 123

storage servers) and assign them to nodes as needed. This way, data is distributed
across the cluster automatically. To perform data operations, clients first contact
a metadata server, and it replies with the location of the storage block or blocks
affected by the operation. The client then uses this information to contact the
appropriate storage server(s) and perform the operation. Other operations that
only modify the namespace are directly executed at the metadata server.

To accommodate for different types and sizes of data, the NodeKernel archi-
tecture supports a tiered storage design. Each storage server implements a type
of storage (DRAM, NVMe, HDD, etc.) that it uses to allocate its blocks. Stor-
age servers are deployed as logical entities encapsulating a set of resources, which
allows them to exploit the different hardware in the same physical or virtual ma-
chine but manage them separately. When a storage server joins the system, it is
registered into one, and only one, storage class. Storage classes allow to group
storage servers and create relations between them. Typically, a storage class would
represent a concrete technology, so that we may have a preferred DRAM tier that
falls back to a NVMe tier when full. Nonetheless, multiple classes may contain the
same technology and an application may freely choose the class it wants its nodes
stored in, and the order classes are filled up. This freedom is key for temporary
data that may have disperse requirements.

5.4.2 Versatility through storage spaces

Glider introduces the concept of storage spaces into Crail. We add this concept
into the metadata servers to correctly manage storage and compute resources
within a storage namespace. We leverage storage servers to create storage spaces.
In this sense, each storage server joins the system as a storage space. We run
storage servers within containerized resources to provide the necessary isolation
and elasticity to bring storage spaces to life and harbor compute and storage ele-
ments in harmony within the same system. In particular, the distinction between
compute and storage is achieved thanks to a new dedicated storage class: the ac-
tive class. With this, compute and storage enjoy their isolated resources to avoid
contention, performance interferences, and degradation. But at the same time,
compute and storage are managed equally within the ephemeral storage system
for improved synergy between the elements.

The isolation and transient model of storage servers has already been exploited
as a substrate for a multi-tenant storage solution and to elastically scale storage
resources on demand in a serverless flavor [105, 109]. These previous works pro-
nounce good results. It allows to isolate different namespaces, from different
owners, by each having an independent stack of storage classes with its own pool

124 Chapter 5. Serverless Ephemeral Computational Storage

of storage servers. Moreover, fine-grained elasticity is also possible with storage
servers. First, they can be of any size and adapt the storage capacity as needed.
Second, they are easy to start and join the system, since the block management
schema simply accepts the new capacity and does not require any data movement.
Finally, removing storage servers is not a problem either. Data stored in the sys-
tem is temporary and expires when the application does not require it anymore.
Thus, storage servers can be removed without drawbacks as demand disappears.

Resource management through storage spaces is an interesting topic. Our
design focuses on how to interconnect storage elements and does not put any
constraint on storage space size and management. We believe these are imple-
mentation details to be tuned by each service or cloud vendor. Applications
have different requirements for ephemeral storage and computation, which need
variable capacity. On the other hand, a commercial service should put limits
to resource occupancy to effectively manage the pool of resources. The service
should thus determine the granularity of storage spaces and the mechanisms to
scale them through evaluating a tradeoff between versatility and resource uti-
lization. Some decisions include configurable capacity, CPU time limitation, or
timeouts for storage spaces. This may be tricky for stateful elements. However,
the temporary nature of the data and computation stored in Glider allows this
kind of light resource management and simplified fault tolerance model, like we
find in FaaS offerings. Some recent research has evaluated this matter [105, 109].

5.4.3 Actions within the storage namespace

To incorporate storage actions, Glider defines two new components to the system:
a new node type and a new storage server type. Additionally, it requires custom
management logic in the metadata servers to support the new elements, and the
necessary client tools and abstractions to create and operate them.

The action node type From a high-level, logical view, actions are a new node
type in the storage semantics. As such, they become another storage element and
can be organized by the storage kernel in the hierarchical namespace. Figure 5.2
shows a view of Glider’s storage semantics and this integration. Action nodes
implement the common node interface so that they can be created, removed, or
accessed in an equivalent way. Data access operations on actions are equivalent
to other storage elements. Applications obtain I/O streams to send data to them
or retrieve it. The overall process, however, is very different. Action nodes do
not simply store and then return the data they are fed with, but they house an
in-memory object that can process the data with arbitrary stateful logic. Each

5.4. System design 125

A

Namespace root

File

Action

Directory

Data access

Storage Application

Serverless
 Workers

Other
 Clients

Figure 5.2: Glider’s storage semantics for the application interface.

operation on an action node triggers the execution of one of the object methods.
For example, a write operation on an action could compute an aggregation on the
data that is being written and keep it for subsequent operations; or a read opera-
tion could generate random data in an infinite stream. We detail how developers
may freely code the internal action objects in Section 5.5.2, and how the system
executes them in Section 5.4.4.

Storage blocks for actions For other node types, the metadata server assigns
storage blocks to them in a chain as their attached data grows. Actions, in
contrast, represent computational entities and not pieces of data. As such, they
operate on all their data in the same place and cannot be split into multiple
storage blocks. Therefore, actions are allocated in a single block, where they will
reside. Then, the metadata server only needs to provide one block reference to
client applications for any operations they request on an action. Thus, reducing
the number of necessary requests to the metadata servers.

The active storage server type Glider adds a new type of storage server
into the architecture: the active storage server. Figure 5.3 draws this new storage
servers into Glider’s data management architecture. Like other storage servers,
active servers are encapsulations of storage space. They register themselves with
the metadata servers and contribute blocks for a namespace. There are two key

126 Chapter 5. Serverless Ephemeral Computational Storage

Metadata
Servers

Active
Class

Storage
Class 1

Storage
Class 2

Storage
Class N

A A

A A

Storage blockAction Slot
Network

Serverless
 Workers

Metadata lookup

Data access

Figure 5.3: Glider’s storage data management architecture.

differences that set active servers apart from the others: (i) they are grouped into
the active storage class, and (ii) their storage blocks are, in fact, action slots. The
dedicated storage class allows the storage kernel to allocate action nodes only on
active servers. Action slots facilitate managing the size of actions in terms of
resources. Similar to other types of storage servers that encapsulate a space for
data (a range of bytes in memory or disk), active servers encapsulate a dedicated
set of resources (memory and compute power) for running actions. Thus, the size
of an active server and the number of slots it registers determine the capacity
and performance of its actions. Since the performance requirements of actions
depends on the application, it is up to the developer to configure these properties;
similar to configuring function memory size in a FaaS platform.

Distributing actions Action distribution across storage servers is also an in-
teresting topic. Like in the case of resource management before, this topic opens
lines of research on its own. Glider does not determine a concrete mechanism to
solve this, since applications may have very different requirements for this subject.
A service may put effort in co-locating actions and other storage elements that
have dependencies to exploit locality. However, others may invest in connecting
storage spaces with a high-performance network that allows the different elements
to perform at full capacity even without co-location [102]. We may find exten-
sive work in the literature about sophisticated scheduling mechanisms for storage
and compute elements with dependencies, e.g., gang scheduling [97], or affinity
languages [151], to name some.

5.4. System design 127

5.4.4 The streamed I/O and execution model

Accessing actions Actions in Glider are storage elements at the level of, e.g.,
files. This is very different from other computational storage solutions [17, 148]
whose computations only intercept accesses to other elements. From an outside
perspective, actions also contain data and can be accessed through a streamed
I/O interface. Each stream opened to an action, however, triggers the execution
of one of its methods on the server. The method handles the other end of the
stream, so that client and action can pass data in a flow of chained data pieces.

Like with any other storage node type, clients must first contact a metadata
server to obtain the location of the action. After that, clients communicate directly
with the corresponding storage server to perform any operation on it. Since
actions only occupy a single block (an action slot), each client only needs to
contact the metadata server once. This is different to other node types that
scatter their data in multiple storage blocks across storage servers.

The action I/O streams work similarly to reading or writing data in the other
types. Long operations are split into multiple chunks of data, and each chunk is
sent in a remote procedure call (RPC). Write RPCs contain a sequence of bytes,
and read RPCs request one. Glider allows to perform these calls asynchronously
to better utilize the network or to perform other tasks concurrently.

The main difference with other storage servers is in that the active storage
server feeds the data into the action object, instead of simply copying it to store.
The goal is that action methods process an I/O stream that is composed of several
RPCs. To achieve this, actions run in execution threads decoupled form the net-
work workers and communicate with them through task queues. When a request
reaches the server, a network worker identifies its type and destination and queues
it as a data task for a specific action. Each I/O stream has its own task queue
that collects the multiple data tasks performed on it. Action threads consume
task queues by running the appropriate action method. While the code of the
action method consumes or populates its stream, internally, data tasks are pro-
cessed and completed. When a data task has been processed, the network thread
is signaled to complete the RPC. The client decides when to finalize the operation
by closing the stream on its side. This sends a final RPC that closes the stream
at the server side and ends the method execution.

Actions and concurrency As remote storage elements, multiple clients may
access actions concurrently. Since actions are stateful elements, concurrent exe-
cution of their logic may result it unexpected behavior due to uncontrolled modi-
fication of the action state. Therefore, we need to define a concurrency model for

128 Chapter 5. Serverless Ephemeral Computational Storage

actions that allows programmers to easily reason about their execution.
Glider executes each action as if it were run by a single thread. This means

that, at any time, there is only one method being run on each action. Multiple
actions may freely execute concurrently. This effectively eliminates unexpected
action state modifications. Furthermore, it facilitates action development by free-
ing programmers from managing complex concurrency issues. To achieve this,
action threads obtain exclusive control of an action object while running one of
its methods.

There are special cases where an application may benefit from multiple I/O
operations running concurrently on the same action. For instance, if we want
multiple clients to read data from an action at the same time, the default con-
currency model would serialize the operations from each client, paralyzing the
read from one of them until the other one completes. To allow multiple clients to
access actions concurrently, Glider supports action interleaving. Interleaving can
be configured when creating the action. The concept is applied similarly to Or-
leans [37]. When activated, the execution of an action method may yield control
while it is waiting for more I/O tasks. In such event, another action method may
take control. Execution is still guaranteed to be single threaded, but methods
may take turns in execution before their completion.

5.5 Using Glider
Glider allows users to code, create, and access actions through simple abstractions.
The interface has two goals for developing actions: 1) they are managed like other
storage elements, and 2) they are coded and deployed like functions in FaaS. This
section defines the application interface to manage actions, details the process of
developing actions, and illustrates it with an example.

5.5.1 Application interface

Glider’s application interface extends the one in Apache Crail. Creating and
handling the basic storage elements is equivalent for both systems. Glider creates
new interface components to manage storage actions. Table 5.1 summarizes the
most relevant elements. The top-level object in the interface is the StoreClient,
that connects to a concrete namespace in the storage system (Namespace Client
in Table 5.1). Its methods allow applications to manage data nodes in the storage
hierarchy with create, lookup, and delete. The identifier for nodes is their
path in the namespace, similar to a file system. When creating a new node, a
parameter allows to specify a preferred storage class. Action nodes are always

5.5. Using Glider 129

Table 5.1: Application programming interface of Glider.

Object Methods
Namespace create<T extends Node>(path, sc) → future(T)
Client creates a new data node of type T in the sc storage class

lookup<T extends Node>(path) → future(T)
finds an existing node at the given path as a T node type

delete(path) → future(boolean)
deletes an existing node at the given path

Action create<T extends Action>(il) → future(boolean)
Node creates an action object of type T in this node

delete() → future(boolean)
deletes the action object in this node

getInputStream() → InputStream
obtains a stream to read from this action

getOutputStream() → OutputStream
obtains a stream to write to this action

Action abstract onRead(outputStream) → void
Object abstract onWrite(inputStream) → void

abstract onCreate() → void
abstract onDelete() → void

each method defines the action logic for each operation

stored in the special active class. Applications receive proxy references to nodes
to further interact with them. For instance, the File and Directory nodes inherited
from Crail provide primitives to read and write data or enumerate their content,
respectively.

The action node proxy data type implements four basic primitives. The
create method allows to instantiate an action object into the node, defining
the action logic. This method requires a concrete action type definition, coded
as explained in Section 5.5.2. An optional parameter (il) toggles interleaving for
that action. The delete method removes the action object within the node. This
allows to run action finalization logic, if necessary, but also to change the action
definition on an existing node, or simply recreate it to clear its state. The other
two primitives allow to obtain I/O streams to transfer data with the action.

It should be noted that all remote operations are non-blocking and asyn-
chronous. Their execution is handled client-side through future objects. This

130 Chapter 5. Serverless Ephemeral Computational Storage

common pattern integrates with modern software interfaces and allows to effi-
ciently handle call results or failures. This allows the construction of buffered I/O
streams that use this model to pipeline RPCs, keep a data operation always in
flight, and not block the application on network access. Another implementation
of direct streams gives the user full control of operations.

5.5.2 Developing actions

To define the logic of actions, developers specialize the Action data type (Action
Object in Table 5.1). This interface defines four methods: onCreate, onDelete,
onRead, and onWrite. onCreate and onDelete run when the action node instan-
tiates or removes the action object, following the analogous method calls to the
action node proxy. onRead and onWrite run for each I/O stream that connects
to the action through the dedicated action node proxy methods. All of them
are optional, with empty default implementations. onCreate and onDelete do
not have parameters and may be used to initialize and finalize the action object.
onRead and onWrite receive one parameter representing the corresponding I/O
stream. For the read operation, the onRead method receives a writeable stream
that it should populate with data as desired. For the write operation, the onWrite
method receives a readable stream from which it can consume the data that is
being written to the action. Additionally, applications may use the object fields
as desired to keep a modest action state (e.g., a counter, a small key-value table,
a custom data type, or references to other storage nodes). Conveniently, action
objects dispose of a namespace client, by default, to access other storage nodes.

Programmers should make their action definitions available to Glider before
creating actions in the storage system. To this end, programmers upload a package
containing their definitions, which is then made available to active storage servers.
Each action definition is registered with a name. Applications may use this name
when instantiating action objects into storage nodes, as detailed in Section 5.5.1.
This process resembles function deployment in FaaS platforms.

5.5.3 Application example

Aggregations are one of the main use cases for storage actions. They exploit
the statefulness of actions to receive data from multiple workers in a single com-
putational element and merge the result with less network transfers. Moreover,
thanks to the streamed I/O interface, applications do not need to store the results
from each worker in full. Storing only the merged data allows actions to use few
resources and keep storage utilization low.

5.5. Using Glider 131

λ

λ

Storage N Workers

Merger Action i

λ

/intermediate_i

 file_0

 file_1

 file_N

/result_i

λ
Reducer i

Next phaseNext phase

λ

λ

Storage N Workers

λ

Next phaseNext phase

X GiB

N·X GiB

Few KiB

X GiB

Few KiB

FaaS + Ephemeral Storage FaaS + Glider

Figure 5.4: Diagram of a data processing aggregation with and without actions. For
one reducer out of a group of them.

We illustrate these cases with an example implementation of an action per-
forming a reduction in a word count job. Figure 5.4 shows a general diagram
of this workload on Glider (right) against a solution with FaaS and traditional
storage (left). In the diagram, we only model one reducer, but this is extensible
to a group of them. Workers generate a list of key-value pairs representing the
counting of words for their part of an input text. The reducer then combines this
information into a single dictionary with the aggregated counting, which may be
used in a future computation phase. In the base solution on the left, workers write
their result in full as storage files. Each worker writes a file for each reducer. The
reducer then reads these files, aggregates data, and writes a new file for the next
phase. With Glider (on the right), this lightweight aggregation is performed by a
storage action. Workers write their key-value pairs directly to actions. The action
merges the keys as they arrive, so that it only stores the aggregated data. A next
computation stage may read this result directly from the action.

The definition of the merger action is shown in Listing 5.1 with simplified Java
code. This action contains an object field, a dictionary, to save the aggregated
data. The creation method initializes this field. The onWrite method processes
the text lines that workers write into the action, combining the keys appropriately
into the local dictionary. Note that our application interface allows to wrap the
input stream with specialized readers, such as to obtain a stream of lines. This
code will process text lines until the stream reaches an end, meaning that the client
has finalized the operation. The onRead method allows to read the aggregation
result from the action. For that, it serializes the local dictionary into the output
stream. Note that closing the stream finishes the operation and notifies the client.

132 Chapter 5. Serverless Ephemeral Computational Storage

Listing 5.1: Action definition to perform an aggregation.
1 public class MergeAction extends Action {
2 private Map <Integer , Long > result ;
3

4 public void onCreate () {
5 result = new HashMap <>();
6 }
7

8 public void onWrite (InputStream input) {
9 Stream <String > lines = input.lines ();

10 lines. forEach (line -> {
11 result .merge(
12 Integer . parseInt (line.split(",")[0]) ,
13 Long. parseLong (line.split(",")[1]) ,
14 (val , acc) -> val + acc);
15 });
16 }
17

18 public void onRead (OutputStream output) {
19 output . writeObject (result);
20 output . close ();
21 }
22 }

This action benefits from interleaving to enable several workers to write to the
same action concurrently. In this case, a write operation waiting for more text in
line 10 may yield control to another write operation that has text available. This
effectively optimizes network utilization.

We fully evaluate this example in Section 5.7. Here we can already see some
of the benefits of storage actions. First, actions allow to eliminate the reducer
on the FaaS side, which required to transfer all intermediate data again between
tiers. Second, thanks to the streamed I/O, the merge action processes data as it
receives it, reducing resource utilization from several GiB in multiple files to just
a few KiB to store the aggregated dictionary.

5.6 System implementation
Glider is implemented in about 3K SLOC in the Java language. The code base
is available online [71]. Glider extends Apache Crail’s base implementation of the
NodeKernel architecture. It inherits Crail’s metadata plane, server management,
basic node types, etc. On top, Glider integrates storage actions and all their

5.6. System implementation 133

features to resolve the unique challenges in confronting serverless data-shipping
with in-storage ephemeral stateful computation. We implement the new action
node type and the new active server type, we modify the metadata servers to
support the new storage elements, and we provide new client abstractions to
access them. Here we describe the implementation details of these novel features.

The metadata servers in Glider include the new structures to manage action
nodes. Action nodes are composable in the storage hierarchy and implement
the same management operations as other nodes. Block management for action
nodes is modified so that they are allocated a single block. Metadata servers
also implement the new specialized storage class for actions. This active class
remains logically separated from the others. The metadata servers check and
enforce that action nodes are placed in this class, while other nodes are allocated
in the other classes as normal. Action nodes are distributed across the active
storage servers that joined the class. In our prototype, we uniformly distribute
actions in the system with a round-robin mechanism. As discussed in Section 5.3,
action distribution and resource management are implementation decisions to be
taken by the service provider.

The active server is implemented as a new type of storage server. It is based
on the DRAM-backed storage server in Crail and uses TCP-IP for RPC requests.
This choice is necessary so that serverless functions can interact with actions.
Instead of the byte buffer storage logic of the DRAM server, the active server
implements an action manager that handles the creation, execution, and dele-
tion of action objects. The action manager allocates slots for actions depending
on configuration and available resources, and it registers them on the metadata
servers.

The active server employs a pool of network threads that respond to client
requests. When an application requests the creation of an action, a thread uses the
manager to instantiate the corresponding action object into memory and perform
the necessary initialization. Upon a delete request, the object is discarded after
finalizing any in-progress operations and running its finalization method. Data
access methods are executed by a separated pool of action threads. This allows to
decouple the execution of action methods from individual RPCs, since a single read
or write operation may be composed of several requests (enabling the streamed
I/O interface). Each read or write operation is assigned an id and a sequence
number that are used to create a task queue. Action threads consume these queues
to execute action methods. The single-thread-like execution of action methods is
achieved with locks. Action threads take the action lock while running one of its
methods. For actions with interleaving, the lock is released when a method is
waiting for more data in its queue.

134 Chapter 5. Serverless Ephemeral Computational Storage

5.7 Evaluation
Goals and scope Our objective with this evaluation is to demonstrate and
understand the benefits of Glider to execute serverless data processing workloads.
To this end, we use different applications to quantify the following key indicators:
(i) the amount of data transferred between compute and storage systems, (ii) the
number of data transfers between the systems, and (iii) the storage utilization
with intermediate data. Since Glider is built on top of Apache Crail, all its
features, as well as the ones presented by Pocket for automatic scaling also apply
to our system. However, since these properties are orthogonal to our goals, we
do not evaluate them; we instead focus on Glider’s new contributions to face
data-shipping, i.e., reducing data transfer and intermediate data. Our baseline
for comparison is the most common approach used for serverless computation
as state-of-the-art, i.e., stateless serverless workers generate intermediate data
that write and read from remote storage throughout different computation stages.
We represent this model as described by PyWren [98] and the AWS Lambda
MapReduce reference architecture [20] and as applied by Pocket [109].

In particular, we aim for answers to the following questions:
• How much data can Glider cut from network transmissions between compute

and storage clusters?
• Is it desirable to push certain stateful computation stages into storage ac-

tions to eliminate a phase of network transfers?
• How much intermediate data can we avoid storing thanks to processing it

with storage actions?
• What are the overall performance effects of these changes in the computation

model?
• What is the overhead of accessing storage actions against accessing other

storage elements?
• Do storage actions scale to the resources available in their storage space?

Setup We run our controlled experiments on a cluster with servers driving two
Intel® Xeon® CPU E5-2690 @ 2.90GHz (16 physical cores) and 96 GiB of memory.
The network link is a 100 Gbps Mellanox Technologies ConnectX-5 MT27800. We
simulate serverless workers by running them on the same cluster. We run storage
spaces on the same machines but give them limited resources. E.g., DRAM servers
use a single core, while active servers may use up to 16. The storage system is
configured by default with 1 MiB block size which is also used as chunk size for
I/O streams to achieve buffered data transfers. All experiments require a single
metadata server.

5.7. Evaluation 135

Table 5.2: Data ingested by workers, execution time, and data processing throughput
for the pipeline benchmark. Processing 10 GiB with 10 workers.

Ingested Time (s) Throughput
Data-shipping 10 GiB 28.866 2.98 Gbps
Glider 25.7 MiB 10.813 7.94 Gbps
Glider (RDMA) 25.7 MiB 9.182 9.36 Gbps

5.7.1 Benefits

Glider allows to offload computation to the storage tier. By doing so, it causes
important impact on data transferred between workers and storage and on the size
of the intermediate data that is stored. We explore the benefits of this approach on
application performance for different patterns common in serverless computation.

Impact of actions on data movement We study this effect in a data pro-
cessing pipeline. The pipeline represents a typical application situation where the
distributed workers need to ingest data from storage. However, before computing
the main operation, data needs to be parsed, arranged, or pre-processed.

In this situation, Glider’s opportunity for improvement consists in offloading
the filter pre-processing to in-storage actions to minimize the amount of data that
transfers to the workers. Workers directly read from these actions that, in turn,
read the original files that are distributed in the system. With this configuration,
the communication between workers and storage is reduced to only the interesting
lines, while actions benefit from near data execution within the storage system to
achieve faster access.

We consider an example were text files need to be filtered on a text-based,
per line condition, before counting the words on the resulting set. We run both
approaches with around 10 GiB of data (from the Wikipedia backup files [179])
and 10 workers (approximately 1 GiB each). In this experiment, we use one active
storage server, and one DRAM storage server (for files).

Table 5.2 summarizes the execution results. By using actions, data transfer
between workers and storage is reduced by 99.75%. This heavily boosts the per-
formance and cost of applications in real scenarios where workers are far from
storage. In our base setup, workers and actions are in the same network as the
storage servers. Therefore, the overhead of reading from a worker or an action
is the same. However, we still experience time reduction by using actions. This
behavior comes mainly from the streamed I/O interface of actions. In particu-
lar, it allows parallelism: actions filter data at the same time that the workers

136 Chapter 5. Serverless Ephemeral Computational Storage

count words. We also demonstrate a potential benefit of having actions directly
within the storage system. The storage servers may be connected with a high-
performance network with RDMA. Actions can exploit this technology, which is
unavailable for serverless workers, and further improve execution time.

Impact of actions on intermediate data The stateful computation of actions
allows to push simple data management stages to them and reduce the number of
connections to storage. Combined with the streamed I/O interface, some tempo-
rary data files are no longer needed to be stored in the system. To evaluate this
impact, we consider a situation where data generated by a set of workers needs
to be aggregated by a reduce operation. In the baseline approach, the reduction
must be performed by another worker. This supposes that the intermediate data
must be stored in full and then read back by the reduce worker.

In this case, Glider’s opportunity for improvement consists in replacing the
reduce worker with an action. This change, thanks to the stateful capabilities of
actions, eliminates a stage in the compute tier and the intermediate data that it
generates. The action will receive concurrently (with interleaving) the data from
the first-stage workers and perform the aggregation at the same time.

We illustrate this situation with a synthetic example. The workers generate
random numeric pairs (key, value) that they emit as strings. The reducer produces
an aggregated dictionary summing the values for each key. In particular, the
generated keys are 1024 distinct integers, and the values comprise the full range
of a Java Long. Each worker generates 50M pairs, which translates into just over
1 GiB of data when sent through network.

Figure 5.5 presents the results for different numbers of workers. Glider reduces
execution time by 27% with 5 workers and by 18% with 10 (see Figure 5.5 left).
This is due to the combination of two factors: (1) Glider transfers half the data
than the baseline approach (see Figure 5.5 right). (2) Glider allows pipelined
processing thanks to I/O streams. That is, the action starts to aggregate data
as soon as it starts receiving it while the workers generate it. This optimizes
network transit for an overall faster computation. All in all, this demonstrates
that pushing stages to stateful storage actions is desirable, as it reduces network
transit without harming application execution time.

This experiment also evidences another advantage of Glider: storage utiliza-
tion. While the baseline needs to store all generated data in storage (about 11 GiB
with 10 workers), the action streams its input as it is generated, only storing the
resulting dictionary (≈24 KiB), which is relevant for the next stage. In this case,
this supposes a reduction in storage utilization of ≈ 99.8%.

5.7. Evaluation 137

1 2 5 100

100

200

Elapsed (s)

1 2 5 10 0

5

10

15

20

Data Transfer (GiB)

Number of Workers

Pocket Glider

Figure 5.5: Reduce operation with Glider against a data-shipping model. Left shows
total time elapsed. Right shows data transferred between application workers and storage.

Impact of actions on performance In these two experiments we have expe-
rienced an overall performance improvement. Several factors contribute to this
matter. First, the reduction in data transfer significantly affects the total run
time of these executions. Although the previous experiments run on a fast net-
work, actual serverless functions have more limited bandwidth, which benefits
even more from this matter. Another contributor to performance is the elimi-
nation of computation stages (and their intermediate data) thanks to offloading
them to storage. Besides the reduction in storage utilization, it also lowers data
movement. Indeed, it removes the need to transfer the full data back to the com-
pute tier. Lastly, an important performance booster is the ability to stream data
between workers and actions. This type of pattern is not possible between server-
less functions, but it allows actions to work in parallel with workers to speed up
application performance.

5.7.2 Micro-benchmarks

Action bandwidth The objective of this benchmark is to assess the bandwidth
to an action in comparison to a base file element. The extra logic necessary to
run arbitrary code when accessing an action suggests that a small penalty should
be expected.

The experiment consists in using a direct stream (not buffered) to write and
read 10 GiB to/from each data type for varying sizes of operation. The direct

138 Chapter 5. Serverless Ephemeral Computational Storage

128 256 512 10240

5

10

15

20

25

G
bp

s

Read

128 256 512 1024

Write

Buffer Size (KiB)

File Action

Figure 5.6: Average access bandwidth to files and actions for different operation sizes.

stream allows us to take full control of operations and maximize network uti-
lization. To this end, asynchronous operations are done in batches so that there
are always data transfers in flight without collapsing the network with too many
requests. We adjust the batch size to achieve best performance on each configu-
ration. Note that operations with more than 1 MiB surpass block size and would
be split into smaller operations.

Figure 5.6 shows the average results of this experiment. Actions do not add
overhead with respect to files for most applications. Read operations achieve at
most 11% less bandwidth, while writes can reach up to 12% higher bandwidth.
This allows the performance improvement we see in the rest of this evaluation.
Note that actions may show slower to users if their logic (user-provided) creates
additional overhead.

Action scale We evaluate the capacity of actions to leverage the full CPU and
network resources in their storage space. We use the same setup of the previous
experiment with 1 MiB operations and replicate it up to 8 parallel actions. Each
action still transfers 10 GiB and is accessed by a dedicated client. The active
storage space runs 8 network threads to enable this parallelism and bandwidth is
computed globally for the aggregated result.

Figure 5.7 shows the results of this benchmark. Running parallel actions
improves bandwidth but plateaus around 45 Gbps (which we identified as the
limit for TCP operations in the cluster). Similar results are drawn from the same

5.7. Evaluation 139

1 2 4 80

10

20

30

40

50

G
bp

s

Read

1 2 4 8

Write

Number of Actions

Figure 5.7: Average access bandwidth for different numbers of concurrent actions.

experiment assessing files. We conclude that actions scale to the resources of their
storage space.

5.7.3 Extended application

In this section, we extend the evaluation of Glider’s performance and benefits
with a complete serverless computing application. In particular, we implement
and study a distributed sort of data. Shuffle operations in MapReduce generate
a lot of intermediate data and, consequently, large data transfers. In a serverless
setting, this has proved to be especially difficult [83]. Sorting is a severe example of
this, because the intermediate data generated contains the full input dataset [141,
150]. Since functions are stateless, each stage needs to read and write everything,
and with the resource limitations of functions, this process can become slow and
expensive. Even more, this kind of processing results arduous from the perspective
of the cloud vendor. The large resources they require are difficult to manage, may
hinder other users, and derive into avoidable ecological impact.

Our baseline is an implementation following the PyWren model as taken by
Pocket [20, 98, 109]. To perform a sort, a set of workers compute in two phases
(map (P1) and reduce (P2)). The input dataset, the intermediate data, and the
resulting sorted data are saved in the storage system as files (in DRAM servers).
The first stage reads the input dataset and, using a sorting key, distributes the
text between the reducers. Each worker generates a new file for each reducer
(intermediate data). In the second stage, reducers read back these files, sort their

140 Chapter 5. Serverless Ephemeral Computational Storage

Storage

 Action 1
/input

 file_0

 file_1

 file_N

λ

λ

Storage N Workers

λ1 GiB

/output

 part_0

 part_1

 part_M

~1 GiB
 Action 2

 Action M

Figure 5.8: Diagram of a sort job with Glider.

content, and write the result again. This solution requires a structure similar to
the one in Figure 5.4.

Glider improves this situation by pushing the shuffle/reduce operation to stor-
age. We illustrate this mechanism with the diagram in Figure 5.8. This presents
three clear advantages. First, an entire stage of workers is no longer needed, which
reduces the number of storage accesses. Second, with less storage accesses, less
data must be transferred in and out of the storage system. And third, thanks
to actions and the streamed interface, part of the sorting can be done in parallel
to the first stage, without waiting for the shuffle to finish. In detail, first-stage
workers do not write into plain files but send the classified data to the appropriate
actions. Note that the process of writing is unchanged since actions and files share
the same streamed interface. As actions receive the data through a stream, they
parse and keep it in memory (P1). When all workers have finished, the actions
start sorting their part of data and write the result as new files (P2).

For the comparison, we use a randomly generated dataset with 1 GiB parti-
tions. We evaluate this application for different number of workers, each of them
reading a full partition (i.e., 16 workers sort 16 GiB in total). We use the same
number of workers and actions for both phases and employ a DRAM storage
server with enough space for storing the data three times and an active server
with space for the 16 actions.

Figure 5.9 presents the results of this experiment. The solution using actions
is always faster than the model with data-shipping. In particular, Glider achieves
a 49.8% time reduction against the baseline with 16 workers. The data-shipping
approach keeps the map phase time (P1) constant, but the reduction (P2) is slow
due to the intensive reading and parsing of intermediate data from the far storage.
On the contrary, Glider is slower during the first phase (P1) because it includes

5.8. Chapter summary 141

1 2 4 8 16
Number of Workers

0

50

100

150

T
im

e
(s

)

Pocket P1 Pocket P2 Glider P1 Glider P2

Figure 5.9: Sort execution time for a serverless architecture with Glider against a data-
shipping approach.

the actions parsing their data. However, the second phase (P2) is up to 71%
faster since actions avoid the extra data transfer from storage and already have
the parsed data in memory.

Before finishing, let us recount and compare the amount of data movement
in each approach. The baseline implementation fully reads and writes the entire
dataset to storage twice; accounting for a data transfer of four times the size of
the data. Glider only reads and writes once, since it only employs one stage of
workers outside storage. In the second phase, actions do not read the data (which
is streamed to them by the workers) and write the result from within the storage
cluster. Therefore, data transfer is limited to twice the dataset size, for a 50%
reduction in data movement.

5.8 Chapter summary
This chapter presents Glider, a novel cloud storage service model aimed to miti-
gate the data-shipping problem of serverless computation by reducing the amount
of data transfers. We argue that FaaS should remain unchanged to not hinder its
advantages, so Glider follows a disaggregated approach and defines a new storage
service designed to collaborate with existing serverless services. The key contribu-
tion of Glider is serverless in-storage ephemeral stateful computation. We achieve

142 Chapter 5. Serverless Ephemeral Computational Storage

this by following three principles: (i) storage spaces synergize compute and stor-
age elements within an ephemeral store; (ii) storage actions encapsulate stateful
computation; and (iii) a common streamed I/O interface facilitates handling large
data.

We design and prototype Glider on top of NodeKernel and Apache Crail, a
multi-tiered storage tailored for temporary data. Glider achieves an efficient in-
tegration of ephemeral computation into the storage system thanks to storage
spaces. Combined with storage actions, this allows data processing applications
to effectively operate on their temporary data. Storage actions go beyond active
storage literature in enabling stateful computation. This is possible because ac-
tions are integrated as elements of the storage system itself, and it opens the door
to more computation offloading and further data transfer reduction. Importantly,
actions implement a streamed I/O interface that allows to process large inter-
mediate data with few resources, which translates into heavily reduced storage
utilization.

The evaluation of Glider shows clear benefits from pushing computation near
storage, helping to reduce the issues of data-shipping present in serverless com-
puting. In particular, we show important reduction in data transfers between
compute and storage tiers, reducing worker data ingestion by 99.75%. Further-
more, Glider allows to eliminate stages from the computation, which decreases the
amount of intermediate data and storage space utilization. In combination, this
improves application performance effectively. For instance, a 16 GiB distributed
sort executed with Glider reduces its total execution time by 49.8%.

In sum, this chapter reveals that stateful serverless computational entities are
desirable to enhance the programmability and performance of cloud applications.
At the same time, they are useful to minimize data transfers in the cloud and re-
duce resource consumption. This is of interest to both, cloud platforms and users,
since it comes with associated benefits in cost, either monetary or environmental.

Chapter 6

Conclusions and Future Work

A lot of distributed applications are stateful. They either need to share mutable
data, coordinate several tasks, or simply aggregate the results of multiple workers.
Current serverless computing is strictly stateless and all these applications do not
have an optimal solution in this new model. Nonetheless, stateful applications
still want to benefit from the rapid elasticity, large scale, and just-right billing
that serverless offers.

In this thesis, we allowed many new applications to run on serverless technolo-
gies. First, we presented the first empirical evaluation of parallelism in serverless
computing. Second, we enabled stateless serverless workers to efficiently share
their mutable application state at fine granularity and easily coordinate their si-
multaneous execution. We developed the first framework to code serverless state-
ful applications with a very simple and well-known interface. Third, we effectively
reduced the repercussions of the data-shipping architecture that is enforced to
run serverless data processing workloads. Our solution is the first exploration of
serverless ephemeral computational storage.

In this section we review all our contributions by recalling our key research
questions and presenting the most relevant results. Then, we present some open
research lines.

144 Chapter 6. Conclusions and Future Work

6.1 Overview of contributions
With the objective to enhance the management of state for serverless computing,
we have put our efforts towards three research questions. These questions define
the major challenges tackled in this document and we next review our contribu-
tions facing them:

Question I: What are the benefits and restrictions that serverless computing
architectures provide to parallel computing?

In Chapter 3, we first analyze the architectures of the four major cloud-
managed FaaS platforms. It is the first detailed study of platform architecture
design that explores the traits that derive in performance differences between ser-
vices for different applications. We extended this information empirically with a
novel benchmark that presents the most detailed evaluation of serverless functions
parallelism in the literature.

Our study of FaaS architecture has revealed important differences between
platforms that affect their performance. In particular, we have detected two
parts of a platform that are highly relevant for parallel applications. First, the
virtualization technology used to isolate function resources directly determines the
quickness of the service to respond to invocations and the degree of interference
between invocations. This overall affects the ability of the platform to provide
resources simultaneously for function invocations, which is core for parallelism.
The community is striving for lighter virtualization technologies such as microVMs
to improve these qualities. Second, the function scheduling approach used to
assign resources to invocations determines how resources are managed within the
system and the general path of invocations traversing the platform. Again, this
affects the quickness of the platform to put invocations in execution, which is
essential for simultaneity. We identified two approaches in the studied platforms.
A push-based approach provides resources eagerly for faster function spawning,
which improves parallelism. A pull-based approach is conservative with resources
(although configurable), which makes it more efficient in terms of cost, but it is
slower to adapt its scale and heavily hinders parallel applications.

Results The experiments prove that these differences in architecture affect how
parallel applications perform in them. We have seen how AWS Lambda, IBM
Cloud Functions, and Google Cloud Functions spawn new resource environments
for each invocation, allowing functions to run simultaneously and provide good
parallelism. Azure Functions, however, packs invocations in very few resources,

6.1. Overview of contributions 145

heavily preventing simultaneity. Experimentation also evinces further details on
scheduling approaches, since different configurations on the services make some
of them achieve higher parallelism, while others are limited to lower simultaneous
executions. In sum, our study has proved that FaaS is not inherently good for
parallel computation. Performance for these applications varies significantly across
platforms, and the users should choose their services very carefully.

After showing that FaaS platforms can be a good substrate for traditional parallel
applications with the correct configuration, our next contributions tackle the most
important limitations of these platforms for such applications. We start with their
need for tasks to share state and coordinate their execution:

Question II: Can we efficiently use serverless computing for applications with
mutable shared state and complex coordination requirements?

In Chapter 4, we create a novel framework to program highly concurrent state-
ful serverless applications. Our system enables cloud developers to construct
serverless applications that require support for mutable shared state and coordi-
nation. We combine a FaaS platform with an efficient disaggregated in-memory
data store that allows functions to share state and coordinate at fine granularity.
Unlike other works, we advocate against modifying the FaaS runtime to provide
a solution that is readily usable in the current cloud. Moreover, this approach
ensures that applications still benefit from the elasticity of serverless computing.

With our framework, users can code their serverless applications like tradi-
tional multi-threaded applications. FaaS functions are abstracted under a cloud
thread construct that allows to code and run serverless functions as traditional
threads and orchestrate them like so. In order to share program state between
these threads, the programmer uses traditional OOP objects to encapsulate it
and a few abstractions transfer the objects to the in-memory data store following
a remote object pattern. Shared objects are made available to all application
threads (functions) and their accesses are linearizable by default to simplify pro-
gramming. This strong consistency of objects makes them an excellent tool to
coordinate threads with well-known primitives or custom logic.

Results We show how to use our system to implement applications such as tra-
ditional data parallel computations, iterative algorithms, and coordination tasks.
Furthermore, we evaluate these applications atop our system against state-of-the-
art solutions. We prove that our serverless implementation of two common ML
algorithms achieves superior or comparable performance to Apache Spark. For

146 Chapter 6. Conclusions and Future Work

function coordination, we determine that our system can outperform ZooKeeper
in this task; and for sharing mutable data, it compares favorably against avail-
able in-memory stores. Importantly, our framework allows to develop all these
applications for the serverless model with very little involvement. Indeed, it only
requires changing less than 6% of the code bases of standard single-machine im-
plementations, even for porting a state-of-the-art multi-threaded ML library.

Besides application state and coordination, the problem of serverless comput-
ing with data is also extensive with huge transfers of intermediate data between
computation stages. Hence, next we undertake the data-shipping problem in
serverless:

Question III: Can we improve the data-shipping problem in serverless comput-
ing without hindering the advantages of serverless functions?

In Chapter 5, we design a novel service for serverless ephemeral computational
storage. This novel architecture allows to perform computation directly where the
data is stored and reduce the number of expensive transfers. Our design describes
a system prepared to cooperate with FaaS, but keeps it separate to fully enjoy its
benefits. Intentionally, our solution extends an auto-scalable ephemeral storage
system, and it inherits these properties from it, making it adequate for fine-grained
storage elasticity.

Our contributions are in the incorporation of compute capacity to the storage
system in the form of actions. Actions are user-provided pieces of code that can
be instantiated into the storage system. Each instance is managed as any other
storage element (e.g., a file) for automatic scale and distribution, and provides
a standard interface for reading and writing it. These operations on an action
trigger the execution of its code, which can operate on a streamed input or output
of data, and even access other elements in the storage, including other actions.
Beyond past research on active storage, our design allows actions to be stateful,
extending the range of applications that can exploit them.

Results We implemented our solution and evaluated it against the currently
available approaches that suffer from data-shipping. Our experiments show up
to 99% data transfer reduction between workers and storage, the elimination of
computation stages with their associated storage accesses and data transfers, and
a lower storage utilization by avoiding storing gigabytes of data. As an exam-
ple, a distributed sort job achieves a 50% execution time reduction thanks to a
combination of these qualities.

6.2. Future research directions 147

6.2 Future research directions
Supporting stateful applications on the current offer of serverless computing is an
arduous task. Throughout the thesis, we have identified many challenges in this
task and provided solutions to several of the problems presented. However, the
challenges are complex and can be approached with many more research ques-
tions; either more generally, or to more specific matters. Moreover, there are
entire research fields we left out of scope, such as security, resource management,
scheduling, or sophisticated fault tolerance mechanisms. That aside, the contri-
butions presented in this document also give way to new research opportunities.
In this section, we discuss some of the topics and ideas that emerge from our work
and that deserve consideration for future investigation.

New technologies for FaaS platforms As more applications take interest
in the flashy benefits of serverless computing, these services will need to consider
improving themselves to adapt to new requirements. Our study has identified two
aspects in FaaS platforms that could be key to cover new applications: virtual-
ization technologies and function scheduling mechanisms. We see future research
exploring more towards improving these properties and supporting more applica-
tions. In fact, we have already seen work in this direction [2, 9] from both academy
and industry and we believe we will see much more in the next years. Another
open research line is the creation of a new serverless service similar to FaaS but
tailored for distributed parallel applications. This presents similar challenges in
virtualization, resource management, and scheduling to guarantee execution si-
multaneity.

New programming abstractions We presented the cloud thread abstraction
to facilitate the execution and orchestration of serverless applications and a remote
object interface to access shared data. Abstractions of this style improve the
development experience and help users avoid common mistakes in distributed
settings. We believe there is still new abstractions to explore that are best suited
to other types of applications. Potential abstractions can adopt traditional models
like other concurrency patterns, or devise novel primitives and constructs, e.g.,
to define compute and data affinities to schedule computation near data. In
fact, we already find open research in tools and frameworks in this line [45, 120].
Abstractions do not stop with serverless computing and can also be applied to
cloud development in general, to make the work of developers easier and more
productive. We recently start to see novel research in this direction [47].

148 Chapter 6. Conclusions and Future Work

Transparency Serverless computing supposes great benefits in automatically
managing and scaling computation in the cloud. However, it is difficult to mi-
grate applications between platforms due to incompatible APIs when uploading or
calling the functions. This requires users or frameworks to develop specific tools
to simplify the deployment and execution of their applications and produces the
so-called vendor lock-in. Transparency in the development of cloud applications
has been discussed in recent research [68]. The goal of this research line is to
abstract the peculiarities of each cloud service to enable a simplified program-
ming model that can transparently run traditional cluster applications on the
cloud with minimum modifications. The cloud vendor lock-in has also triggered
interest in multi-platform and multi-region tools to transparently utilize services
from different cloud providers [147]. This effort opens new research objectives to
orchestrate applications in this novel setting.

Serverless data analytics Executing data analytics applications in a serverless
flavor is still open for research in different points of view. We studied the issues
that the data-shipping model generates in these jobs and designed a storage so-
lution to counteract them. Nonetheless, other aspects like worker orchestration,
pipeline optimization, distributed data structures, and other execution decisions
are out the scope of our work. Serverless still needs a complete programming
framework that facilitates developers to code their applications and then execute
them automatically in the most efficient way. In a traditional cluster setup, we
may use Apache Spark [182] or Ray [135] to achieve these goals. Recently, we have
seen auto-scaling implemented into these systems [11, 79] to simulate a serverless
experience [123]. However, future research is open to build a new data analytics
framework that exploits serverless properties by design.

Bibliography

[1] A. Acharya, M. Uysal, and J. Saltz. “Active Disks: Programming Model,
Algorithms and Evaluation”. In: Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages and Op-
erating Systems. ASPLOS VIII. San Jose, California, USA: Association for
Computing Machinery, 1998, pp. 81–91. isbn: 1581131070. doi: 10.1145/
291069.291026.

[2] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P.
Piwonka, and D.-M. Popa. “Firecracker: Lightweight Virtualization for
Serverless Applications”. In: 17th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 20). Santa Clara, CA: USENIX
Association, Feb. 2020, pp. 419–434. isbn: 978-1-939133-13-7.

[3] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and
V. Hilt. “SAND: Towards High-performance Serverless Computing”. In:
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference. USENIX ATC ’18. Boston, MA, USA: USENIX Association,
2018, pp. 923–935. isbn: 978-1-931971-44-7.

[4] Apache. Apache OpenWhisk. https://openwhisk.apache.org/.
[5] Apache. Apache OpenWhisk Composer. https://github.com/apache/

openwhisk-composer. 2017.
[6] Apache. HBase - Coprocessor Introduction. https://blogs.apache.org/

hbase/entry/coprocessor_introduction. 2012.
[7] Apache. OpenWhisk Concurrency. https : / / github . com / apache /

openwhisk/blob/master/docs/concurrency.md.

https://doi.org/10.1145/291069.291026
https://doi.org/10.1145/291069.291026
https://openwhisk.apache.org/
https://github.com/apache/openwhisk-composer
https://github.com/apache/openwhisk-composer
https://blogs.apache.org/hbase/entry/coprocessor_introduction
https://blogs.apache.org/hbase/entry/coprocessor_introduction
https://github.com/apache/openwhisk/blob/master/docs/concurrency.md
https://github.com/apache/openwhisk/blob/master/docs/concurrency.md

150 Bibliography

[8] Apache. ZooKeeper barrier recipe. https://zookeeper.apache.org/doc/
current/recipes.html#sc_recipes_eventHandles. 2019.

[9] gVisor Authors. What is gVisor? https://gvisor.dev/docs/. 2020.
[10] AWS. Configuring Functions in the AWS Lambda Console. https://docs.

aws.amazon.com/lambda/latest/dg/configuration-console.html.
2020.

[11] AWS. EMR Serverless. https://aws.amazon.com/emr/serverless/.
2021.

[12] AWS. Fargate. https://aws.amazon.com/fargate/. 2017.
[13] AWS. Invoke - AWS Lambda. https://docs.aws.amazon.com/lambda/

latest/dg/API_Invoke.html. 2015.
[14] AWS. Lambda. https://docs.aws.amazon.com/lambda. 2014.
[15] AWS. Lambda function scaling. https://docs.aws.amazon.com/lambda/

latest/dg/invocation-scaling.html. 2020.
[16] AWS. Lambda limits. https://docs.aws.amazon.com/lambda/latest/

dg/gettingstarted-limits.html. 2020.
[17] AWS. S3 Object Lambda. https : / / aws . amazon . com / s3 / features /

object-lambda/. 2021.
[18] AWS. S3 Select. https://docs.aws.amazon.com/AmazonS3/latest/

userguide/selecting-content-from-objects.html. 2017.
[19] AWS. Security Overview of AWS Lambda. https://d1.awsstatic.com/

whitepapers/Overview-AWS-Lambda-Security.pdf. 2019.
[20] AWS. Serverless Reference Architecture: MapReduce. https://github.

com/awslabs/lambda-refarch-mapreduce. 2017.
[21] AWS. Simple Storage Service. https://aws.amazon.com/s3. 2008.
[22] AWS. Step Functions. https://aws.amazon.com/step-functions. 2016.
[23] Azure. Create a function in Azure using Visual Studio Code. https://

docs.microsoft.com/en- us/azure/azure- functions/functions-
create-first-function-vs-code. 2020.

[24] Azure. Durable Entities. https://docs.microsoft.com/en-us/azure/
azure-functions/durable/durable-functions-entities. 2019.

[25] Azure. Durable Functions. https://functions.azure.com. 2016.

https://zookeeper.apache.org/doc/current/recipes.html#sc_recipes_eventHandles
https://zookeeper.apache.org/doc/current/recipes.html#sc_recipes_eventHandles
https://gvisor.dev/docs/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-console.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-console.html
https://aws.amazon.com/emr/serverless/
https://aws.amazon.com/fargate/
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://aws.amazon.com/s3/features/object-lambda/
https://aws.amazon.com/s3/features/object-lambda/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://github.com/awslabs/lambda-refarch-mapreduce
https://github.com/awslabs/lambda-refarch-mapreduce
https://aws.amazon.com/s3
https://aws.amazon.com/step-functions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-function-vs-code
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-function-vs-code
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-function-vs-code
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://functions.azure.com

Bibliography 151

[26] Azure. Estimating Consumption plan costs. https://docs.microsoft.
com/en-us/azure/azure-functions/functions-consumption-costs.
2020.

[27] Azure. Functions HTTP output bindings. https://docs.microsoft.com/
en-us/azure/azure-functions/functions-bindings-http-webhook-
output. 2020.

[28] Azure. Functions scale and hosting. https://docs.microsoft.com/en-
us/azure/azure-functions/functions-scale. 2020.

[29] Azure runtime environment. https://github.com/projectkudu/kudu/
wiki/Azure-runtime-environment. 2019.

[30] D. Barcelona-Pons. “State Support for Serverless Cloud Services”. In: 6th
URV Doctoral Workshop in Computer Science and Mathematics. Ed. by
C. Julià and A. Valls. Tarragona, Spain: Publicacions URV, Apr. 2020,
pp. 9–12. isbn: 978-84-8424-865-1.

[31] D. Barcelona-Pons and P. García-López. “Benchmarking parallelism in
FaaS platforms”. In: Future Generation Computer Systems 124 (Nov.
2021), pp. 268–284. issn: 0167-739X. doi: 10.1016/j.future.2021.
06.005.

[32] D. Barcelona-Pons, P. García-López, Á. Ruiz, A. Gómez-Gómez, G. París,
and M. Sánchez-Artigas. “FaaS Orchestration of Parallel Workloads”. In:
Proceedings of the 5th International Workshop on Serverless Computing.
WOSC ’19. Davis, CA, USA: Association for Computing Machinery, 2019,
pp. 25–30. isbn: 978-1-4503-7038-7. doi: 10.1145/3366623.3368137.

[33] D. Barcelona-Pons, Á. Ruiz-Ollobarren, D. Arroyo-Pinto, and P. García-
López. “Studying the feasibility of serverless actors”. In: Proceedings of
the European Symposium on Serverless Computing and Applications, ES-
SCA@UCC 2018. Ed. by J. Spillner. Vol. 2330. CEUR Workshop Proceed-
ings. Zurich, Switzerland: CEUR-WS.org, 2018, pp. 25–29.

[34] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and P. García-
López. “On the FaaS Track: Building Stateful Distributed Applications
with Serverless Architectures”. In: Proceedings of the 20th International
Middleware Conference. Middleware ’19. Davis, CA, USA: Association for
Computing Machinery, Dec. 2019, pp. 41–54. isbn: 978-1-4503-7009-7. doi:
10.1145/3361525.3361535.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-consumption-costs
https://docs.microsoft.com/en-us/azure/azure-functions/functions-consumption-costs
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-output
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-output
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-output
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://github.com/projectkudu/kudu/wiki/Azure-runtime-environment
https://github.com/projectkudu/kudu/wiki/Azure-runtime-environment
https://doi.org/10.1016/j.future.2021.06.005
https://doi.org/10.1016/j.future.2021.06.005
https://doi.org/10.1145/3366623.3368137
https://doi.org/10.1145/3361525.3361535

152 Bibliography

[35] D. Barcelona-Pons, P. Sutra, M. Sánchez-Artigas, G. París, and P. García-
López. “Stateful Serverless Computing with Crucial”. In: ACM Trans.
Softw. Eng. Methodol. 31.3 (Mar. 2022). issn: 1049-331X. doi: 10.1145/
3490386.

[36] M. Ben-Ari. “How to Solve the Santa Claus Problem”. In: Concur-
rency: Practice and Experience 10 (2001). doi: 10.1002/(SICI)1096-
9128(199805)10:63.0.CO;2-2.

[37] P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin. Orleans: Dis-
tributed Virtual Actors for Programmability and Scalability. Tech. rep.
MSR-TR-2014-41. Mar. 2014.

[38] K. P. Birman and T. A. Joseph. “Reliable Communication in the Presence
of Failures”. In: ACM Transactions on Computers Systems 5.1 (Jan. 1987),
pp. 47–76. issn: 0734-2071. doi: 10.1145/7351.7478.

[39] S. Blum. Amazon SNS vs PubNub: Differences for Pub/Sub. https://www.
pubnub.com/blog/2014- 08- 21- amazon- sns- pubnub- differences-
pubsub/. 2014.

[40] L. Breiman. “Random Forests”. In: Mach. Learn. 45.1 (Oct. 2001), pp. 5–
32. issn: 0885-6125. doi: 10.1023/A:1010933404324.

[41] E. Bruneton, R. Lenglet, and T. Coupaye. “ASM: A code manipulation tool
to implement adaptable systems”. In: Adaptable and extensible component
systems. 2002.

[42] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz. “Cirrus:
A Serverless Framework for End-to-End ML Workflows”. In: Proceedings
of the ACM Symposium on Cloud Computing. SoCC ’19. Santa Cruz,
CA, USA: Association for Computing Machinery, 2019, pp. 13–24. isbn:
9781450369732. doi: 10.1145/3357223.3362711.

[43] J. Carreira, P. Fonseca, A. Tumanov, A. M. Zhang, and R. Katz. “A Case
for Serverless Machine Learning”. In: Workshop on Systems for ML and
Open Source Software at NeurIPS. 2018.

[44] G. Casale, M. Artac, W. van den Heuvel, A. van Hoorn, P. Jakovits,
F. Leymann, M. Long, V. Papanikolaou, D. Presenza, A. Russo, et al.
“RADON: rational decomposition and orchestration for serverless com-
puting”. In: SICS Softw.-Intensive Cyber Phys. Syst. 35.1 (2020), pp. 77–
87. doi: 10.1007/s00450-019-00413-w.

https://doi.org/10.1145/3490386
https://doi.org/10.1145/3490386
https://doi.org/10.1002/(SICI)1096-9128(199805)10:63.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199805)10:63.0.CO;2-2
https://doi.org/10.1145/7351.7478
https://www.pubnub.com/blog/2014-08-21-amazon-sns-pubnub-differences-pubsub/
https://www.pubnub.com/blog/2014-08-21-amazon-sns-pubnub-differences-pubsub/
https://www.pubnub.com/blog/2014-08-21-amazon-sns-pubnub-differences-pubsub/
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1007/s00450-019-00413-w

Bibliography 153

[45] R. Chatley and T. Allerton. “Nimbus: Improving the Developer Ex-
perience for Serverless Applications”. In: 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering: Companion Proceedings
(ICSE-Companion) (2020), pp. 85–88.

[46] C. Chen, Y. Chen, and P. C. Roth. “DOSAS: Mitigating the Resource
Contention in Active Storage Systems”. In: 2012 IEEE International Con-
ference on Cluster Computing. 2012, pp. 164–172. doi: 10.1109/CLUSTER.
2012.66.

[47] A. Cheung, N. Crooks, J. M. Hellerstein, and M. Milano. “New Directions
in Cloud Programming”. In: 11th Conference on Innovative Data Systems
Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online Pro-
ceedings. www.cidrdb.org, 2021.

[48] G. V. Chockler, I. Keidar, and R. Vitenberg. “Group Communication Spec-
ifications: A Comprehensive Study”. In: ACM Comput. Surv. 33.4 (2001),
pp. 427–469.

[49] CloudButton. Serverless Benchmark. https://cloudbutton.github.io/
benchmarks/. 2020.

[50] Cloudflare. Durable Objects. https : / / developers . cloudflare . com /
workers/learning/using-durable-objects. 2019.

[51] Cloudflare. What Is Function-as-a-Service? https://www.cloudflare.
com/learning/serverless/glossary/function-as-a-service-faas/.
2020.

[52] M. Copik, R. Böhringer, A. Calotoiu, and T. Hoefler. FMI: Fast and Cheap
Message Passing for Serverless Functions. 2022.

[53] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems:
Concepts and Design. 5th. USA: Addison-Wesley Publishing Company,
2011. isbn: 0132143011.

[54] Databricks. spark-perf. https://github.com/databricks/spark-perf.
2014.

[55] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. issn:
0001-0782. doi: 10.1145/1327452.1327492.

[56] D. J. DeWitt and M. Stonebraker. MapReduce: A major step backwards.
DatabaseColumn Blog. http://www.databasecolumn.com/2008/01/
mapreduce-a-major-step-back.html. 2008.

https://doi.org/10.1109/CLUSTER.2012.66
https://doi.org/10.1109/CLUSTER.2012.66
https://cloudbutton.github.io/benchmarks/
https://cloudbutton.github.io/benchmarks/
https://developers.cloudflare.com/workers/learning/using-durable-objects
https://developers.cloudflare.com/workers/learning/using-durable-objects
https://www.cloudflare.com/learning/serverless/glossary/function-as-a-service-faas/
https://www.cloudflare.com/learning/serverless/glossary/function-as-a-service-faas/
https://github.com/databricks/spark-perf
https://doi.org/10.1145/1327452.1327492
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html

154 Bibliography

[57] T. Distler, C. Bahn, A. Bessani, F. Fischer, and F. Junqueira. “Extensible
Distributed Coordination”. In: Proceedings of the Tenth European Confer-
ence on Computer Systems. EuroSys ’15. Bordeaux, France: ACM, 2015,
10:1–10:16. isbn: 978-1-4503-3238-5. doi: 10.1145/2741948.2741954.

[58] Docker. Runtime metrics. https : / / docs . docker . com / config /
containers/runmetrics/. 2020.

[59] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H.
Chen. “Catalyzer: Sub-Millisecond Startup for Serverless Computing with
Initialization-Less Booting”. In: Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS ’20. Lausanne, Switzerland: Association
for Computing Machinery, 2020, pp. 467–481. isbn: 9781450371025. doi:
10.1145/3373376.3378512.

[60] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein. “NICA: An
Infrastructure for Inline Acceleration of Network Applications”. In: 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton, WA:
USENIX Association, July 2019, pp. 345–362. isbn: 978-1-939133-03-8.

[61] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, et al. “Azure Ac-
celerated Networking: SmartNICs in the Public Cloud”. In: 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18).
Renton, WA: USENIX Association, Apr. 2018, pp. 51–66. isbn: 978-1-
939133-01-4.

[62] Fission. https://fission.io/. 2016.
[63] B. Fitzpatrick. “Distributed Caching with Memcached”. In: Linux J.

2004.124 (Aug. 2004), p. 5. issn: 1075-3583.
[64] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Za-

haria, and K. Winstein. “From Laptop to Lambda: Outsourcing Everyday
Jobs to Thousands of Transient Functional Containers”. In: 2019 USENIX
Annual Technical Conference (USENIX ATC 19). Renton, WA: USENIX
Association, July 2019, pp. 475–488. isbn: 978-1-939133-03-8.

[65] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W.
Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein. “Encoding,
Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny
Threads”. In: 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’17). 2017.

https://doi.org/10.1145/2741948.2741954
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://doi.org/10.1145/3373376.3378512
https://fission.io/

Bibliography 155

[66] P. García López, M. Sánchez-Artigas, G. París, D. Barcelona Pons, Á.
Ruiz Ollobarren, and D. Arroyo Pinto. “Comparison of FaaS Orchestration
Systems”. In: 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion). 2018, pp. 148–153. doi:
10.1109/UCC-Companion.2018.00049.

[67] P. García-López, M. Sánchez-Artigas, S. Shillaker, P. Pietzuch, D. Breit-
gand, G. Vernik, P. Sutra, T. Tarrant, and A. J. Ferrer. ServerMix: Trade-
offs and Challenges of Serverless Data Analytics. 2019. arXiv: 1907.11465
[cs.DC].

[68] P. García-López, A. Slominski, S. Shillaker, M. Behrendt, and B. Metzler.
Serverless End Game: Disaggregation enabling Transparency. 2020. arXiv:
2006.01251 [cs.DC].

[69] S. L. Garfinkel. An Evaluation of Amazon’s Grid Computing Services: EC2,
S3, and SQS. Tech. rep. TR-08-07. Harvard Computer Science Group,
2007.

[70] V. Giménez-Alventosa, G. Moltó, and M. Caballer. “A framework and a
performance assessment for serverless MapReduce on AWS Lambda”. In:
Future Generation Computer Systems 97 (2019), pp. 259–274. issn: 0167-
739X. doi: 10.1016/j.future.2019.02.057.

[71] Glider - GitHub. https://github.com/danielBCN/incubator-crail.
2022.

[72] M. Goldstein and S. Uchida. “A Comparative Evaluation of Unsupervised
Anomaly Detection Algorithms for Multivariate Data”. In: PLOS ONE
11.4 (Apr. 2016), pp. 1–31. doi: 10.1371/journal.pone.0152173.

[73] Google. Cloud Composer. https://cloud.google.com/composer. 2018.
[74] Google. Cloud Functions. https://cloud.google.com/functions/. 2016.
[75] Google. Cloud Functions Execution Environment. https : / / cloud .

google.com/functions/docs/concepts/exec. 2020.
[76] Google. GKE Sandbox: Bring defense in depth to your pods. https://

cloud . google . com / blog / products / containers - kubernetes / gke -
sandbox-bring-defense-in-depth-to-your-pods. 2019.

[77] Google. Google Cloud Function Pricing. https://cloud.google.com/
functions/pricing. 2020.

[78] Google. Google Cloud Function Quotas. https://cloud.google.com/
functions/quotas. 2020.

https://doi.org/10.1109/UCC-Companion.2018.00049
https://arxiv.org/abs/1907.11465
https://arxiv.org/abs/1907.11465
https://arxiv.org/abs/2006.01251
https://doi.org/10.1016/j.future.2019.02.057
https://github.com/danielBCN/incubator-crail
https://doi.org/10.1371/journal.pone.0152173
https://cloud.google.com/composer
https://cloud.google.com/functions/
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/blog/products/containers-kubernetes/gke-sandbox-bring-defense-in-depth-to-your-pods
https://cloud.google.com/blog/products/containers-kubernetes/gke-sandbox-bring-defense-in-depth-to-your-pods
https://cloud.google.com/blog/products/containers-kubernetes/gke-sandbox-bring-defense-in-depth-to-your-pods
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/quotas
https://cloud.google.com/functions/quotas

156 Bibliography

[79] Google. Spark on Google Cloud. https://cloud.google.com/solutions/
spark. 2021.

[80] R. Gracia-Tinedo, M. Sánchez-Artigas, P. García-López, Y. Moatti, and
F. Gluszak. “Lamda-Flow: Automatic Pushdown of Dataflow Operators
Close to the Data”. In: 2019 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2019, pp. 112–
121. doi: 10.1109/CCGRID.2019.00022.

[81] R. Hat. Reliable group communication with JGroups. http://jgroups.
org/manual/#TOA. 2015.

[82] Hazelcast. Entry Processor. https://docs.hazelcast.com/imdg/4.2/
computing/entry-processor. 2021.

[83] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith, V.
Sreekanti, A. Tumanov, and C. Wu. “Serverless Computing: One Step
Forward, Two Steps Back”. In: CIDR 2019, 9th Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 13-16,
2019, Online Proceedings. 2019.

[84] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. “Serverless Computation with open-
Lambda”. In: Proceedings of the 8th USENIX Conference on Hot Topics in
Cloud Computing. HotCloud’16. Denver, CO: USENIX Association, 2016,
pp. 33–39.

[85] D. Hensgen, R. Finkel, and U. Manber. “Two Algorithms for Barrier Syn-
chronization”. In: Int. J. Parallel Program. 17.1 (Feb. 1988), pp. 1–17. issn:
0885-7458. doi: 10.1007/BF01379320.

[86] C. A. R. Hoare. “Monitors: An Operating System Structuring Concept”.
In: Commun. ACM 17.10 (Oct. 1974), pp. 549–557. issn: 0001-0782. doi:
10.1145/355620.361161.

[87] T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, and R. Brightwell.
“SPIN: High-Performance Streaming Processing In the Network”. In: Pro-
ceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. SC ’17. Denver, Colorado: Associa-
tion for Computing Machinery, 2017. isbn: 9781450351140. doi: 10.1145/
3126908.3126970.

[88] G. Holmes, A. Donkin, and I. H. Witten. “WEKA: a machine learning
workbench”. In: Proceedings of ANZIIS ’94 - Australian New Zealnd Intel-
ligent Information Systems Conference. 1994, pp. 357–361.

https://cloud.google.com/solutions/spark
https://cloud.google.com/solutions/spark
https://doi.org/10.1109/CCGRID.2019.00022
http://jgroups.org/manual/#TOA
http://jgroups.org/manual/#TOA
https://docs.hazelcast.com/imdg/4.2/computing/entry-processor
https://docs.hazelcast.com/imdg/4.2/computing/entry-processor
https://doi.org/10.1007/BF01379320
https://doi.org/10.1145/355620.361161
https://doi.org/10.1145/3126908.3126970
https://doi.org/10.1145/3126908.3126970

Bibliography 157

[89] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. “ZooKeeper: Wait-free
Coordination for Internet-scale Systems”. In: USENIX Annual Technical
Conference. USENIX ATC. Boston, MA: USENIX Association, 2010.

[90] IBM. How Cloud Functions works. https : / / cloud . ibm . com / docs /
openwhisk?topic=openwhisk-about. 2020.

[91] IBM. System details and limits. https : / / cloud . ibm . com / docs /
openwhisk?topic=openwhisk-limits. 2020.

[92] T. Inc. KDD Cup - 2012. https://www.openml.org/d/1220. 2014.
[93] V. Ishakian, V. Muthusamy, and A. Slominski. “Serving Deep Learning

Models in a Serverless Platform”. In: 2018 IEEE International Conference
on Cloud Engineering (IC2E). 2018, pp. 257–262. doi: 10.1109/IC2E.
2018.00052.

[94] A. Israeli and L. Rappoport. “Disjoint-access-parallel Implementations of
Strong Shared Memory Primitives”. In: Proceedings of the Thirteenth An-
nual ACM Symposium on Principles of Distributed Computing. PODC’94.
1994, pp. 151–160. doi: 10.1145/197917.198079.

[95] Z. Istvan, D. Sidler, and G. Alonso. “Active Pages 20 Years Later: Active
Storage for the Cloud”. In: IEEE Internet Computing 22.4 (2018), pp. 6–
14. doi: 10.1109/MIC.2018.043051460.

[96] A. Jangda, D. Pinckney, Y. Brun, and A. Guha. “Formal Foundations of
Serverless Computing”. In: Proc. ACM Program. Lang. 3.OOPSLA (Oct.
2019). doi: 10.1145/3360575.

[97] K. R. Jayaram, V. Muthusamy, P. Dube, V. Ishakian, C. Wang, B. Herta,
S. Boag, D. Arroyo, A. Tantawi, A. Verma, et al. “FfDL: A Flexible Multi-
Tenant Deep Learning Platform”. In: Proceedings of the 20th International
Middleware Conference. Middleware ’19. Davis, CA, USA: Association for
Computing Machinery, 2019, pp. 82–95. isbn: 9781450370097. doi: 10.
1145/3361525.3361538.

[98] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. “Occupy the
Cloud: Distributed Computing for the 99%”. In: Proceedings of the 2017
Symposium on Cloud Computing. SoCC’17. 2017. doi: 10.1145/3127479.
3128601.

http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-about
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-about
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-limits
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-limits
https://www.openml.org/d/1220
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1145/197917.198079
https://doi.org/10.1109/MIC.2018.043051460
https://doi.org/10.1145/3360575
https://doi.org/10.1145/3361525.3361538
https://doi.org/10.1145/3361525.3361538
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601

158 Bibliography

[99] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q.
Pu, V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar, et al.
Cloud Programming Simplified: A Berkeley View on Serverless Computing.
Tech. rep. UCB/EECS-2019-3. EECS Department, University of Califor-
nia, Berkeley, Feb. 2019.

[100] S. Joyner, M. MacCoss, C. Delimitrou, and H. Weatherspoon. Ripple:
A Practical Declarative Programming Framework for Serverless Compute.
2020. arXiv: 2001.00222 [cs.DC].

[101] B. Kalantari and A. Schiper. “14th International Conference Distributed
Computing and Networking”. In: ICDCN. Springer Berlin Heidelberg,
2013. Chap. Addressing the ZooKeeper Synchronization Inefficiency.

[102] A. Kalia, M. Kaminsky, and D. Andersen. “Datacenter RPCs can be Gen-
eral and Fast”. In: 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). Boston, MA: USENIX Association, Feb.
2019, pp. 1–16. isbn: 978-1-931971-49-2.

[103] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D.
Lewin. “Consistent Hashing and Random Trees: Distributed Caching Pro-
tocols for Relieving Hot Spots on the World Wide Web”. In: 29th Annual
ACM Symposium on Theory of Computing. STOC. 1997. doi: 10.1145/
258533.258660.

[104] K. Keeton, D. A. Patterson, and J. M. Hellerstein. “A Case for Intelligent
Disks (IDISKs)”. In: SIGMOD Rec. 27.3 (Sept. 1998), pp. 42–52. issn:
0163-5808. doi: 10.1145/290593.290602.

[105] A. Khandelwal, Y. Tang, R. Agarwal, A. Akella, and I. Stoica. “Jiffy:
Elastic Far-Memory for Stateful Serverless Analytics”. In: Proceedings of
the Seventeenth European Conference on Computer Systems. EuroSys ’22.
Rennes, France: Association for Computing Machinery, 2022, pp. 697–713.
isbn: 9781450391627. doi: 10.1145/3492321.3527539.

[106] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. “An Overview of AspectJ”. In: 15th European Conference on
Object-Oriented Programming. ECOOP. 2001.

[107] Y. Kim and J. Lin. “Serverless Data Analytics with Flint”. In: 2018 IEEE
11th International Conference on Cloud Computing (CLOUD). Los Alami-
tos, CA, USA: IEEE Computer Society, July 2018, pp. 451–455. doi: 10.
1109/CLOUD.2018.00063.

https://arxiv.org/abs/2001.00222
http://dx.doi.org/10.1007/978-3-642-35668-1_31
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/290593.290602
https://doi.org/10.1145/3492321.3527539
http://dl.acm.org/citation.cfm?id=646158.680006
https://doi.org/10.1109/CLOUD.2018.00063
https://doi.org/10.1109/CLOUD.2018.00063

Bibliography 159

[108] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and A. Trivedi.
“Understanding Ephemeral Storage for Serverless Analytics”. In: 2018
USENIX Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, July 2018, pp. 789–794. isbn: 978-1-939133-01-4.

[109] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis.
“Pocket: Elastic Ephemeral Storage for Serverless Analytics”. In: 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). Carlsbad, CA: USENIX Association, Oct. 2018, pp. 427–444.
isbn: 978-1-939133-08-3.

[110] Knative. https://knative.dev/. 2014.
[111] Kubeless. https://kubeless.io/. 2016.
[112] J. Kuhlenkamp, S. Werner, M. C. Borges, and D. Ernst. “All but One:

FaaS Platform Elasticity Revisited”. In: SIGAPP Appl. Comput. Rev. 20.3
(Sept. 2020), pp. 5–19. issn: 1559-6915. doi: 10.1145/3429204.3429205.

[113] J. Kuhlenkamp, S. Werner, M. C. Borges, D. Ernst, and D. Wenzel.
“Benchmarking Elasticity of FaaS Platforms as a Foundation for Objective-
Driven Design of Serverless Applications”. In: Proceedings of the 35th An-
nual ACM Symposium on Applied Computing. SAC ’20. Brno, Czech Re-
public: Association for Computing Machinery, 2020, pp. 1576–1585. isbn:
9781450368667. doi: 10.1145/3341105.3373948.

[114] A. Lakshman and P. Malik. “Cassandra: a decentralized structured storage
system”. In: SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010).

[115] lambda-maven-plugin. https://github.com/SeanRoy/lambda- maven-
plugin. 2019.

[116] H. Lee, K. Satyam, and G. Fox. “Evaluation of production serverless com-
puting environments”. In: 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD). IEEE. 2018, pp. 442–450. doi: 10.1109/
CLOUD.2018.00062.

[117] B. Li, K. Tan, L. (Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen. “ClickNP: Highly Flexible and High Performance Network
Processing with Reconfigurable Hardware”. In: Proceedings of the 2016
ACM SIGCOMM Conference. SIGCOMM ’16. Florianopolis, Brazil: As-
sociation for Computing Machinery, 2016, pp. 1–14. isbn: 9781450341936.
doi: 10.1145/2934872.2934897.

[118] H. Li. Smile. https://haifengl.github.io. 2014.
[119] Lithops - GitHub. https://github.com/lithops-cloud/lithops. 2021.

https://knative.dev/
https://kubeless.io/
https://doi.org/10.1145/3429204.3429205
https://doi.org/10.1145/3341105.3373948
https://github.com/SeanRoy/lambda-maven-plugin
https://github.com/SeanRoy/lambda-maven-plugin
https://doi.org/10.1109/CLOUD.2018.00062
https://doi.org/10.1109/CLOUD.2018.00062
https://doi.org/10.1145/2934872.2934897
https://haifengl.github.io
https://github.com/lithops-cloud/lithops

160 Bibliography

[120] Y. Liu, B. Jiang, T. Guo, Z. Huang, W. Ma, X. Wang, and C. Zhou.
FuncPipe: A Pipelined Serverless Framework for Fast and Cost-efficient
Training of Deep Learning Models. 2022. doi: 10.48550/ARXIV.2204.
13561.

[121] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on
Information Theory 28.2 (Mar. 1982), pp. 129–137. issn: 0018-9448. doi:
10.1109/TIT.1982.1056489.

[122] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. “Server-
less Computing: An Investigation of Factors Influencing Microservice Per-
formance”. In: 2018 IEEE International Conference on Cloud Engineering
(IC2E). 2018, pp. 159–169. doi: 10.1109/IC2E.2018.00039.

[123] B. Lorica, E. Liang, and I. Stoica. The Ideal Foundation for a General
Purpose Serverless Platform. https://www.anyscale.com/blog/the-
ideal-foundation-for-a-general-purpose-serverless-platform.
2020.

[124] N. A. Lynch. Distributed Algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996. isbn: 1558603484.

[125] X. Ma and A. Reddy. “MVSS: an active storage architecture”. In: IEEE
Transactions on Parallel and Distributed Systems 14.10 (2003), pp. 993–
1005. doi: 10.1109/TPDS.2003.1239868.

[126] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji, and S. Bagchi.
“SONIC: Application-aware Data Passing for Chained Serverless Applica-
tions”. In: 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, July 2021, pp. 285–301. isbn: 978-1-939133-23-6.

[127] P. Maissen, P. Felber, P. Kropf, and V. Schiavoni. “FaaSdom: A Benchmark
Suite for Serverless Computing”. In: Proceedings of the 14th ACM Inter-
national Conference on Distributed and Event-Based Systems. DEBS ’20.
Montreal, Quebec, Canada: Association for Computing Machinery, 2020,
pp. 73–84. isbn: 9781450380287. doi: 10.1145/3401025.3401738.

[128] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Ya-
sukata, C. Raiciu, and F. Huici. “My VM is Lighter (and Safer) than Your
Container”. In: Proceedings of the 26th Symposium on Operating Systems
Principles. SOSP ’17. Shanghai, China: Association for Computing Ma-
chinery, 2017, pp. 218–233. isbn: 9781450350853. doi: 10.1145/3132747.
3132763.

https://doi.org/10.48550/ARXIV.2204.13561
https://doi.org/10.48550/ARXIV.2204.13561
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/IC2E.2018.00039
https://www.anyscale.com/blog/the-ideal-foundation-for-a-general-purpose-serverless-platform
https://www.anyscale.com/blog/the-ideal-foundation-for-a-general-purpose-serverless-platform
https://doi.org/10.1109/TPDS.2003.1239868
https://doi.org/10.1145/3401025.3401738
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3132747.3132763

Bibliography 161

[129] F. Marchioni and M. Surtani. Infinispan Data Grid Platform. Packt Pub-
lishing Ltd, 2012.

[130] O. Matan, H. S. Baird, J. Bromley, C. J. C. Burges, J. S. Denker, L. D.
Jackel, Y. Le Cun, E. P. D. Pednault, W. D. Satterfield, C. E. Stenard,
et al. “Reading Handwritten Digits: A ZIP Code Recognition System”. In:
Computer 25.7 (July 1992), pp. 59–63. issn: 0018-9162. doi: 10.1109/2.
144441.

[131] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J.
Freeman, D. Tsai, M. Amde, S. Owen, et al. “MLlib: Machine Learning in
Apache Spark”. In: Journal of Machine Learning Research 17.34 (2016),
pp. 1–7.

[132] Y. Moatti, E. Rom, R. Gracia-Tinedo, D. Naor, D. Chen, J. Sampe, M.
Sanchez-Artigas, P. García-López, F. Gluszak, E. Deschdt, et al. “Too
Big to Eat: Boosting Analytics Data Ingestion from Object Stores with
Scoop”. In: 2017 IEEE 33rd International Conference on Data Engineer-
ing (ICDE). IEEE, 2017, pp. 309–320. doi: 10.1109/ICDE.2017.243.

[133] S. K. Mohanty, G. Premsankar, and M. di Francesco. “An Evaluation of
Open Source Serverless Computing Frameworks”. In: 2018 IEEE Interna-
tional Conference on Cloud Computing Technology and Science (Cloud-
Com). 2018, pp. 115–120.

[134] I. Moraru, D. G. Andersen, and M. Kaminsky. “There is More Consensus
in Egalitarian Parliaments”. In: ACM Symposium on Operating Systems
Principles (SOSP). 2013, pp. 358–372.

[135] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M.
Elibol, Z. Yang, W. Paul, M. I. Jordan, et al. “Ray: A Distributed Frame-
work for Emerging AI Applications”. In: Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation. OSDI’18.
Carlsbad, CA, USA: USENIX Association, 2018, pp. 561–577. isbn: 978-
1-931971-47-8.

[136] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam, R.
Lachaize, J. Hwang, T. Wood, D. Hagimont, et al. “OFC: An Opportunis-
tic Caching System for FaaS Platforms”. In: Proceedings of the Sixteenth
European Conference on Computer Systems. EuroSys ’21. Online Event,
United Kingdom: Association for Computing Machinery, 2021, pp. 228–
244. isbn: 9781450383349. doi: 10.1145/3447786.3456239.

https://www.packtpub.com/big-data-and-business-intelligence/infinispan-data-grid-platform
https://doi.org/10.1109/2.144441
https://doi.org/10.1109/2.144441
https://doi.org/10.1109/ICDE.2017.243
https://doi.org/10.1145/3447786.3456239

162 Bibliography

[137] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau. “SOCK: Rapid Task Provisioning with Serverless-
Optimized Containers”. In: 2018 USENIX Annual Technical Conference
(USENIX ATC 18). Boston, MA: USENIX Association, July 2018, pp. 57–
70. isbn: 978-1-931971-44-7.

[138] OpenFaaS. https://www.openfaas.com/. 2016.
[139] M. Pawlik, K. Figiela, and M. Malawski. Performance considerations on

execution of large scale workflow applications on cloud functions. 2019.
arXiv: 1909.03555 [cs.DC].

[140] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. “Calibrating
Probability with Undersampling for Unbalanced Classification”. In: 2015
IEEE Symposium Series on Computational Intelligence. 2015, pp. 159–166.

[141] Q. Pu, S. Venkataraman, and I. Stoica. “Shuffling, Fast and Slow: Scalable
Analytics on Serverless Infrastructure”. In: 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, 2019, pp. 193–206. isbn: 978-1-931971-49-2.

[142] Redis. https://redis.io/. 2009.
[143] Redis. EVAL. https://redis.io/commands/eval/. 2022.
[144] Redis. Replication. https://redis.io/topics/replication. 2019.
[145] E. Riedel, G. A. Gibson, and C. Faloutsos. “Active Storage for Large-Scale

Data Mining and Multimedia”. In: Proceedings of the 24rd International
Conference on Very Large Data Bases. VLDB ’98. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1998, pp. 62–73. isbn: 1558605665.

[146] F. Romero, G. I. Chaudhry, Í. Goiri, P. Gopa, P. Batum, N. J. Yadwadkar,
R. Fonseca, C. Kozyrakis, and R. Bianchini. “Faa$T: A Transparent Auto-
Scaling Cache for Serverless Applications”. In: Proceedings of the ACM
Symposium on Cloud Computing. SoCC ’21. Seattle, WA, USA: Association
for Computing Machinery, 2021, pp. 122–137. isbn: 9781450386388. doi:
10.1145/3472883.3486974.

[147] J. Sampe, P. Garcia-Lopez, M. Sanchez-Artigas, G. Vernik, P. Roca-
Llaberia, and A. Arjona. “Toward Multicloud Access Transparency in
Serverless Computing”. In: IEEE Software 38.01 (Jan. 2021), pp. 68–74.
issn: 1937-4194. doi: 10.1109/MS.2020.3029994.

https://www.openfaas.com/
https://arxiv.org/abs/1909.03555
https://redis.io/
https://redis.io/commands/eval/
https://redis.io/topics/replication
https://doi.org/10.1145/3472883.3486974
https://doi.org/10.1109/MS.2020.3029994

Bibliography 163

[148] J. Sampé, M. Sánchez-Artigas, P. García-López, and G. París. “Data-
Driven Serverless Functions for Object Storage”. In: Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference. Middleware ’17. Las
Vegas, Nevada: Association for Computing Machinery, 2017, pp. 121–133.
isbn: 9781450347204. doi: 10.1145/3135974.3135980.

[149] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. García-López. “Serverless
Data Analytics in the IBM Cloud”. In: Proceedings of the 19th Interna-
tional Middleware Conference Industry. Middleware ’18. Rennes, France:
ACM, 2018, pp. 1–8. isbn: 978-1-4503-6016-6. doi: 10.1145/3284028.
3284029.

[150] M. Sánchez-Artigas, G. T. Eizaguirre, G. Vernik, L. Stuart, and P. García-
López. “Primula: A Practical Shuffle/Sort Operator for Serverless Com-
puting”. In: Proceedings of the 21st International Middleware Conference
Industrial Track. Middleware ’20. Delft, Netherlands: Association for Com-
puting Machinery, 2020, pp. 31–37. isbn: 9781450382014. doi: 10.1145/
3429357.3430522.

[151] B. Sang, P.-L. Roman, P. Eugster, H. Lu, S. Ravi, and G. Petri. “PLASMA:
Programmable Elasticity for Stateful Cloud Computing Applications”. In:
Proceedings of the Fifteenth European Conference on Computer Systems.
EuroSys ’20. Heraklion, Greece: Association for Computing Machinery,
2020. isbn: 9781450368827. doi: 10.1145/3342195.3387553.

[152] J. Scheuner and P. Leitner. “Function-as-a-Service performance evalua-
tion: A multivocal literature review”. In: Journal of Systems and Software
(2020), p. 110708. issn: 0164-1212. doi: https://doi.org/10.1016/j.
jss.2020.110708.

[153] F. B. Schneider. “Implementing fault-tolerant services using the state ma-
chine approach: a tutorial”. In: ACM Comput. Surv. 22.4 (1990), pp. 299–
319. issn: 0360-0300. doi: 10.1145/98163.98167.

[154] Serverless Framework. https://www.serverless.com/. 2021.
[155] M. Shahrad, J. Balkind, and D. Wentzlaff. “Architectural Implications

of Function-as-a-Service Computing”. In: Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture. MICRO
’52. Columbus, OH, USA: Association for Computing Machinery, 2019,
pp. 1063–1075. isbn: 9781450369381. doi: 10.1145/3352460.3358296.

https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3284028.3284029
https://doi.org/10.1145/3284028.3284029
https://doi.org/10.1145/3429357.3430522
https://doi.org/10.1145/3429357.3430522
https://doi.org/10.1145/3342195.3387553
https://doi.org/https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1145/98163.98167
https://www.serverless.com/
https://doi.org/10.1145/3352460.3358296

164 Bibliography

[156] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E.
Laureano, C. Tresness, M. Russinovich, and R. Bianchini. Serverless in the
Wild: Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. 2020. arXiv: 2003.03423 [cs.DC].

[157] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica, J. Ragan-
Kelley, E. Jonas, and S. Venkataraman. “Serverless Linear Algebra”. In:
Proceedings of the 11th ACM Symposium on Cloud Computing. SoCC ’20.
Virtual Event, USA: Association for Computing Machinery, 2020, pp. 281–
295. isbn: 978-1-4503-8137-6. doi: 10.1145/3419111.3421287.

[158] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Convergent and
Commutative Replicated Data Types”. In: Bulletin of the European Asso-
ciation for Theoretical Computer Science (EATCS) (June 2011).

[159] M. Shilkov. From 0 to 1000 Instances: How Serverless Providers Scale
Queue Processing. https : / / blog . binaris . com / from - 0 - to - 1000 -
instances/. retrieved 2020. 2018.

[160] S. Shillaker and P. Pietzuch. “Faasm: Lightweight Isolation for Efficient
Stateful Serverless Computing”. In: 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). USENIX Association, July 2020, pp. 419–433.
isbn: 978-1-939133-14-4.

[161] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The
Complete Reference, Volume 1: The MPI Core. 2nd. (Revised). Cambridge,
MA, USA: MIT Press, 1998. isbn: 0262692155.

[162] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. “Transactional storage
for geo-replicated systems”. In: Symp. on Operating Systems Principles.
SOSP ’11. Cascais, Portugal, 2011, pp. 385–400. isbn: 978-1-4503-0977-6.
doi: http://doi.acm.org/10.1145/2043556.2043592.

[163] V. Sreekanti, C. Wu, S. Chhatrapati, J. E. Gonzalez, J. M. Hellerstein,
and J. M. Faleiro. “A Fault-Tolerance Shim for Serverless Computing”. In:
Proceedings of the Fifteenth European Conference on Computer Systems.
EuroSys ’20. Heraklion, Greece: Association for Computing Machinery,
2020. isbn: 9781450368827. doi: 10.1145/3342195.3387535.

[164] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez,
J. M. Hellerstein, and A. Tumanov. “Cloudburst: Stateful Functions-as-a-
Service”. In: Proc. VLDB Endow. 13.12 (July 2020), pp. 2438–2452. issn:
2150-8097. doi: 10.14778/3407790.3407836.

https://arxiv.org/abs/2003.03423
https://doi.org/10.1145/3419111.3421287
https://blog.binaris.com/from-0-to-1000-instances/
https://blog.binaris.com/from-0-to-1000-instances/
https://doi.org/http://doi.acm.org/10.1145/2043556.2043592
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.14778/3407790.3407836

Bibliography 165

[165] B. Strehl. Serverless Benchmark 2.0. https://medium.com/elbstack/
serverless- benchmark- 2- 0- part- i- f23acb8e8a29. retrieved 2022.
2019.

[166] P. Stuedi, A. Trivedi, J. Pfefferle, A. Klimovic, A. Schuepbach, and B.
Metzler. “Unification of Temporary Storage in the NodeKernel Architec-
ture”. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19).
Renton, WA: USENIX Association, July 2019, pp. 767–782. isbn: 978-1-
939133-03-8.

[167] P. Sutra, E. Rivière, C. Cotes, M. Sánchez-Artigas, P. García-López, E.
Bernard, W. Burns, and G. Zamarreño. “CRESON: Callable and Repli-
cated Shared Objects over NoSQL”. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). 2017, pp. 115–
128. doi: 10.1109/ICDCS.2017.239.

[168] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka. “Sequoia:
Enabling Quality-of-Service in Serverless Computing”. In: Proceedings of
the 11th ACM Symposium on Cloud Computing. SoCC ’20. Virtual Event,
USA: Association for Computing Machinery, 2020, pp. 311–327. isbn:
9781450381376. doi: 10.1145/3419111.3421306.

[169] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. “Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System”. In: ACM SIGOPS. Copper Mountain,
CO, USA: ACM Press, Dec. 1995, pp. 172–182. doi: 10.1145/224056.
224070.

[170] The Crucial Project - GitHub. https://github.com/crucial-project.
2020.

[171] J. A. Trono. “A new exercise in concurrency”. In: SIGCSE Bulletin 26.3
(1994), pp. 8–10. issn: 0097-8418. doi: 10.1145/187387.187391.

[172] M. Uysal, A. Acharya, and J. Saltz. “Evaluation of active disks for deci-
sion support databases”. In: Proceedings Sixth International Symposium on
High-Performance Computer Architecture. HPCA-6 (Cat. No.PR00550).
2000, pp. 337–348. doi: 10.1109/HPCA.2000.824363.

[173] E. van Eyk, J. Grohmann, S. Eismann, A. Bauer, L. Versluis, L. Toader, N.
Schmitt, N. Herbst, C. L. Abad, and A. Iosup. “The SPEC-RG Reference
Architecture for FaaS: From Microservices and Containers to Serverless
Platforms”. In: IEEE Internet Computing 23.6 (2019), pp. 7–18. doi: 10.
1109/MIC.2019.2952061.

https://medium.com/elbstack/serverless-benchmark-2-0-part-i-f23acb8e8a29
https://medium.com/elbstack/serverless-benchmark-2-0-part-i-f23acb8e8a29
https://doi.org/10.1109/ICDCS.2017.239
https://doi.org/10.1145/3419111.3421306
https://doi.org/10.1145/224056.224070
https://doi.org/10.1145/224056.224070
https://github.com/crucial-project
https://doi.org/10.1145/187387.187391
https://doi.org/10.1109/HPCA.2000.824363
https://doi.org/10.1109/MIC.2019.2952061
https://doi.org/10.1109/MIC.2019.2952061

166 Bibliography

[174] H. Vashishtha and E. Stroulia. “Enhancing Query Support in HBase Via
An Extended Coprocessors Framework”. In: Proceedings of the 4th Eu-
ropean Conference on Towards a Service-Based Internet. ServiceWave’11.
Poznan, Poland: Springer-Verlag, 2011, pp. 75–87. isbn: 9783642247545.

[175] A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht, D. Skourtis, V.
Tarasov, F. Yan, and Y. Cheng. “InfiniCache: Exploiting Ephemeral
Serverless Functions to Build a Cost-Effective Memory Cache”. In: 18th
USENIX Conference on File and Storage Technologies (FAST 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 267–281. isbn: 978-1-
939133-12-0.

[176] H. Wang, D. Niu, and B. Li. “Distributed Machine Learning with a Server-
less Architecture”. In: IEEE Conference on Computer Communications,
INFOCOM 2019. 2019.

[177] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. “Peeking Behind
the Curtains of Serverless Platforms”. In: 2018 USENIX Annual Technical
Conference (USENIX ATC 18). Boston, MA: USENIX Association, July
2018, pp. 133–146. isbn: 978-1-939133-01-4.

[178] R. Wickremesinghe, J. S. Chase, and J. S. Vitter. “Distributed Computing
with Load-Managed Active Storage”. In: Proceedings of the 11th IEEE
International Symposium on High Performance Distributed Computing.
HPDC ’02. USA: IEEE Computer Society, 2002, p. 13. isbn: 0769516866.

[179] Wikimedia. Wikimedia downloads. https : / / dumps . wikimedia . org/.
2022.

[180] C. Wu. The State of Serverless Computing. Presentation at QCon New
York 2019. 2019.

[181] C. Wu, V. Sreekanti, and J. M. Hellerstein. “Autoscaling Tiered Cloud
Storage in Anna”. In: Proc. VLDB Endow. 12.6 (Feb. 2019), pp. 624–638.
issn: 2150-8097. doi: 10.14778/3311880.3311881.

[182] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. “Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing”. In: Pre-
sented as part of the 9th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 12). San Jose, CA: USENIX, 2012, pp. 15–
28. isbn: 978-931971-92-8.

https://dumps.wikimedia.org/
https://doi.org/10.14778/3311880.3311881

Bibliography 167

[183] L. Zeng, S. Chen, Q. Wei, and D. Feng. “SeDas: A self-destructing data
system based on active storage framework”. In: 2012 Digest APMRC. 2012,
pp. 1–8.

[184] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu. “Fault-tolerant
and transactional stateful serverless workflows”. In: 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 1187–1204. isbn: 9781939133199.

[185] J. Zhang, A. Wang, X. Ma, B. Carver, N. J. Newman, A. Anwar, L. Rup-
precht, D. Skourtis, V. Tarasov, F. Yan, et al. Sion: Elastic Serverless
Cloud Storage. 2022. doi: 10.48550/ARXIV.2209.01496.

[186] T. Zhang, D. Xie, F. Li, and R. Stutsman. “Narrowing the Gap Be-
tween Serverless and Its State with Storage Functions”. In: Proceedings
of the ACM Symposium on Cloud Computing. SoCC ’19. Santa Cruz,
CA, USA: Association for Computing Machinery, 2019, pp. 1–12. isbn:
9781450369732. doi: 10.1145/3357223.3362723.

https://doi.org/10.48550/ARXIV.2209.01496
https://doi.org/10.1145/3357223.3362723

	Abstract
	Acknowledgements
	Thesis Publications
	List of Figures
	List of Tables
	List of Abbreviations
	Motivation and Challenges
	Problem statement
	Contributions of this thesis
	Outline of this dissertation

	State of the Art
	Serverless computing under study
	Performance evaluation
	Architectural analysis
	Discussion

	Stateful serverless computing
	Serverless runtimes
	Programming frameworks
	Storage
	Distributed stateful computation
	Discussion

	Data-shipping in serverless computing
	Complete disaggregation
	Unified systems
	Computation-enabled storage
	Discussion

	Studying Parallelism in FaaS
	Introduction
	Scope and challenges
	Contributions

	Architecture analysis
	Comparative framework
	Architecture of AWS Lambda
	Architecture of Azure Functions
	Architecture of Google Cloud Functions
	Architecture of IBM Cloud Functions
	Architecture summary

	Experiment methodology
	Questions for discussion
	Function definition
	Function configuration
	On a bigger scale
	Experiment execution
	Metrics
	Plot description

	Experiment on Amazon Web Services
	Results
	Discussion

	Experiment on Microsoft Azure
	Results
	Discussion

	Experiment on Google Cloud Platform
	Results
	Discussion

	Experiment on IBM Cloud
	Results
	Discussion

	Experiment summary
	Do FaaS platforms fit parallel computation?
	Chapter summary

	Serverless Stateful Computation
	Introduction
	Scope and challenges
	Contributions

	Background
	FaaS computing: value under restraint
	The dilemma of shared data
	An overview of Crucial

	Using Crucial
	Programming model
	Sample applications
	Portage to serverless

	System design
	The distributed shared objects layer
	Fast aggregates through remote procedure call
	Lifecycle of an application
	Fault tolerance

	Implementation
	Evaluation
	Micro-benchmarks
	Fine-grained state management
	Fine-grained coordination
	Smile library
	Usability of Crucial

	Chapter summary

	Serverless Ephemeral Computational Storage
	Introduction
	Scope and challenges
	Contributions

	Background and motivation
	Serverless and temporary data
	Data-shipping in serverless
	An overview of Glider
	Requirements and challenges

	Glider
	What code should we ship?
	Using storage actions

	System design
	NodeKernel in brief
	Versatility through storage spaces
	Actions within the storage namespace
	The streamed I/O and execution model

	Using Glider
	Application interface
	Developing actions
	Application example

	System implementation
	Evaluation
	Benefits
	Micro-benchmarks
	Extended application

	Chapter summary

	Conclusions and Future Work
	Overview of contributions
	Future research directions

	Bibliography

