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Abstract—The elasticity of the Cloud is very appealing for
processing large scientific data. However, enormous volumes of
unstructured research data, totaling petabytes, remain untapped
in data repositories due to the lack of efficient parallel data
access. Even-sized partitioning of these data to enable its parallel
processing requires a complete re-write to storage, becoming
prohibitively expensive for high volumes. In this article we
present Dataplug, an extensible framework that enables fine-
grained parallel data access to unstructured scientific data
in object storage. Dataplug employs read-only, format-aware
indexing, allowing to define dynamically-sized partitions using
various partitioning strategies. This approach avoids writing the
partitioned dataset back to storage, enabling distributed workers
to fetch data partitions on-the-fly directly from large data blobs,
efficiently leveraging the high bandwidth capability of object
storage. Validations on genomic (FASTQGZip) and geospatial
(LiDAR) data formats demonstrate that Dataplug considerably
lowers pre-processing compute costs (between 65.5% — 71.31%
less) without imposing significant overheads.

Index Terms—data partitioning, Cloud, object storage, scien-
tific data management, unstructured data, data analytics

I. INTRODUCTION

The seemingly “infinite” compute and storage resources
available in the Cloud have paved the way for handling
unprecedented amounts of unstructured data, marking the
evolution from big data to what is termed as extreme data [2].
Extreme data is characterized by its increasing volume, speed,
variety, complexity and extreme variations in values, which
challenge current distributed computing technologies that
struggle to cope with such demanding characteristics [3]. For
instance, The Cancer Genome Atlas [4] openly offers 2.5
petabytes of a multitude of cancer cell genomic data for
researchers to analyze, with different unstructured data formats
(VCF, BAM,. . . ) and great variation in size (from KB to TB)
and complexity.

To analyze these extreme data repositories, researchers must
first deal with data partitioning, which is crucial for efficient
workload distribution [5] and to fully harness the scalability
and parallelism of Cloud resources [6]. We understand data
partitioning as chunking a large dataset into smaller logical

chunks, so that each chunk (or partition) can be processed
by a distributed worker, thus increasing the scalability of
data-parallel applications. For example, a large dataset of 3D
geospatial points that describe a region of the Earth’s surface
could be partitioned into smaller geographic regions, so that
we can distribute the workload to process each sub-region
separately, increasing the overall parallelism.

However, partitioning extreme unstructured data at this scale
is challenging. A common approach for unstructured data is
to partition a dataset into smaller even-sized files or objects,
or transform it into a “Cloud-friendly” format [7]. This,
however, involves reading, pre-processing, and writing back
to storage the whole dataset, which can become extremely
costly. Moreover, this issue is further exacerbated in Cloud
scenarios, where object storage serves as the primary storage
for scientific computing in the Cloud [7]. Since objects are
immutable, partitioning a dataset into many objects requires re-
writing all the data, making this approach inefficient. Finally,
arbitrarily setting a fixed partition size without any hints can
result in suboptimal performance [5], given the variation in
workload requirements. While distributed computing frame-
works like Dask or Spark can partition large files in arbitrary
byte ranges, this approach is only applicable to generic formats
like CSV and it breaks unstructured data formats.

Thus, we argue that static partitioning is not a viable
solution for extreme scientific computing. Instead, we advocate
for an alternative approach involving read-only format-aware
pre-processing enabling on-the-fly dynamic partitioning.

Read-only format-aware pre-processing generates indexes
and metadata for existing cold unstructured data without over-
writing it. This approach eliminates the need to write back the
entire pre-processed dataset to storage, addressing the lack of
in-place modifications in object storage. The resulting indexes
and metadata are used to query the file structure, allowing to
dynamically fetch data partitions of any size on-the-fly, directly
from object storage, enabling fine-grained parallel access to
large unstructured scientific data blobs. These indexes are
object storage-aware, specifically built for high throughput and
concurrent reads using native object storage APIs.

We present Dataplug, an extensible framework that im-
plements the on-the-fly data partitioning model. Dataplug
hides the complexities of unstructured scientific data pre-
processing and partitioning, offering researchers a data-driven



pre-processing and dynamic on-the-fly partitioning strategies
for diverse unstructured scientific data formats. Dataplug aims
to build an open community of both data providers and
researchers, with the goal of enabling efficient analysis of
extreme data in the Cloud. The framework provides open-
source implementations of pre-processing and partitioning
strategies for formats from different domains, inviting devel-
opers to contribute or adapt the code to their needs. Dataplug
enables efficient parallel access to existing unstructured data
blobs in their original scientific format. Currently, we support
FASTA, FASTQGZIP, and VCF for genomic data, LIDAR
for geospatial data, and imzML for metabolomics data, with
plans to include additional formats in the future. Furthermore,
Dataplug is compatible with Cloud-optimized formats like
Cloud-optimized Point Cloud [8] and Cloud-optimized Geo-
TIFF [9]. These formats only support content queries, whereas
Dataplug brings to them partitioning semantics that simplify
their processing in data-parallel workloads.

Dataplug’s objective is to unlock extreme data processing
that was previously unfeasible or prohibitively expensive.
Empirical evaluations on geospatial and genomics data reveal a
65.5% to 71.31% reduction in pre-processing compute costs,
translating to potentially thousands of dollars in savings at
the peta-scale. Finally, dynamic partitioning enables dataset-
wide re-partitioning at zero cost, allowing one to utilize
different partition sizes and to choose the optimal one for each
workload.

Dataplug has been developed as part of the NEARDATA 1

project, which focuses on addressing the challenges arising
from extreme data scientific in the Cloud and edge. The
project deals with data-parallel workloads that require effi-
cient parallel data access to large-scale repositories in the
Cloud: genomics epistasis and transcriptomics, metabolomics
metabolite annotation, among others. With these targeted use
cases, the NEARDATA project, through Dataplug, aims to
significantly advance the efficiency and scalability of scientific
Cloud computing.

Our contributions are:

1) We propose on-the-fly dynamic partitioning to enable
fine-grained parallel access to large unstructured scientific
data blobs, as a replacement to static partitioning at a
fraction of the pre-processing cost.

2) We develop the Dataplug framework. Dataplug acts as
an abstraction layer for data partitioning, allowing re-
searchers to define dynamically-sized partitions using dif-
ferent strategies based on workload-specific criteria. Dat-
aplug is open source and is publicly available in Github2.

3) We validate Dataplug with industry-standard data formats
from genomics (FASTQGZip) and geospatial (LiDAR)
domains. We empirically demonstrate that Dataplug sig-
nificantly reduces pre-processing costs up to 71.31%
without adding overhead in partition retrieval.

1https://neardata.eu/
2https://github.com/CLOUDLAB-URV/dataplug

II. BACKGROUND AND MOTIVATION

The synergy between elastic compute resources and object
storage has enabled to scale demanding scientific applications
in the Cloud. Thanks to elasticity, we can adapt the compute
capacity to the data volume to process, instead of adapting
the data to a specific cluster size [6]. As a consequence, data
partitioning becomes critical for efficiently parallelizing and
scaling data-parallel workloads.

Many Cloud-based data repositories rely on object storage
as a cost-effective solution for large scientific data archiv-
ing [10]. Object storage is convenient for accessing large data
blobs in parallel, as partial reads using HTTP GET byte-
range allow workers to remotely access data partitions at
high bandwidth. Despite this, dealing with data that cannot
be efficiently consumed in parallel poses a potential bottle-
neck that jeopardizes scalability. Hence, it’s crucial not only
to enable concurrent partial reads, but also to know which
partial reads (offsets and ranges) are necessary for workers
to access and process a specific logical partition within a large
dataset. Therefore, for unstructured formats that are not easily
partitionable, a prior pre-processing is necessary to determine
the appropriate logical data partitions.

Cloud computing frameworks: Spark [11] and Dask [12]
are commonly used to deploy scientific workloads in the
Cloud. They provide built-in abstractions for reading semi-
structured, tabular, or array data from object storage (like CSV
or Apache Parquet), which are trivial to partition and access
in parallel (e.g., a worker can retrieve a set of rows from
a large CSV file). However, unstructured data that cannot be
represented as a table or an array must be provided as a single
unit (e.g. a file) per worker/executor, which limits parallelism
or requires ad-hoc partitioning. For instance, Dask’s bag
abstraction provides operations like map over a set of files
in S3, but further partitioning of those files is not supported
out of the box. We see that there is a lack of standardized
support for unstructured scientific data formats in general-
purpose distributed computing frameworks.

Cloud-optimized file formats: Cloud-optimized for-
mats [9] allow to retreive specific portions of a remote file in an
HTTP server without the need to download and filter the entire
content. For example, Cloud-optimized GeoTIFF [9] allows
to query and retrieve sub-tiles of raster images (e.g. satellite
images). Another example is Zarr [13], which is a compressed
and chunked file format and library for N-dimensional array
data. To accomplish this, Cloud-optimized data formats re-
arrange the file contents in a specific indexed structure, with
metadata describing the structure stored in extensible headers
within the file. Users can query the metadata and utilize HTTP
GET byte-range requests in object stores to enable parallel data
access. However, not all file formats (e.g. FASTQ) support ar-
bitrary re-arrangement of their content and embedded storage
of metadata in optional extensible headers. As a result, those
formats cannot benefit from a Cloud optimization upgrade.
Additionally, transforming datasets in object stores to become
Cloud-optimized is costly, as it requires a complete trans-

https://neardata.eu/
https://github.com/CLOUDLAB-URV/dataplug


formation and rewriting of the entire dataset. Kerchunk [14]
addresses this issue by indexing legacy array data formats
(netCDF4/HDF, GRIB2, TIFF, FITS) to be compatible with
Zarr for parallel access from object storage, without applying
format transformation. However, it is arguable whether Zarr
is only suitable for array data. There is a wide variety of
unstructured scientific data formats that are incompatible with
Zarr, such as text-based formats (for instance, Variant Calling
Format data in genomics), making them unable to benefit from
its advantages.

Where does Dataplug fit?: In particular, Dataplug
adresses the following challenges:

1) Despite the increasing support for general-purpose array-
like data formats for Cloud object storage (e.g., Zarr),
many scientific data formats are still not adequately
addressed. With Dataplug’s approach, we enable ef-
ficient partitioning and parallel data access to Cloud
object storage for many domain-specific scientific formats
as well. In particular, in this article we focus on two
representative formats: FASTQGZip from genomics and
LiDAR from geospatial — but Dataplug also implements
dynamic on-the-fly partitioning for VCF genomic data
and imzML metabolomic data, with plans to support more
formats in the future. Dataplug model allows a broader
range of formats and workloads to benefit from the
advantages of Cloud-based data processing.

2) Dataplug’s approach represents an advancement over
Cloud-optimized formats, as it eliminates the need for
rearranging file contents and metadata embedding in
optional headers. Dataplug overcomes these constraints
through read-only pre-processing, which avoids modify-
ing existing data by decoupling metadata from raw data.
This allows to support formats that cannot re-arrange their
content and do not have an option for embedded metadata
to also benefit from indexing and partitioning, making
them equivalent to Cloud-optimized formats (for exam-
ple, FASTQGZip and LiDAR data, which are discussed
in Section IV). Additionally, existing Cloud-optimized
formats (such as GeoTIFF, Zarr or COPC [8]) can also
benefit from Dataplug, as Cloud-optimized formats only
offer queries over the content. Dataplug can incorpo-
rate partitioning semantics to Cloud-optimized data
formats, being able to abstract the partitioning logic and
adapt it to the requirements of each specific workload.

3) Dataplug specifically targets domain-specific unstruc-
tured scientific data formats, which pose significant chal-
lenges for efficient partitioning and parallel access in
Cloud environments. Other generic formats (such as CSV
or Parquet) are already supported by general-purpose dis-
tributed computing frameworks (like Dask or PySpark).
In this regard, Dataplug is designed to act as glue code
to integrate with these frameworks to facilitate the
Cloud adoption for new scientific workloads.

The following sections provide a deeper description of Dat-
aplug’s model and architecture and how the aforementioned

challenges are solved.

III. ENABLING DYNAMIC ON-THE-FLY PARTITIONING

This section presents the data model of Dataplug which en-
ables parallel data access for unstructured scientific formats. In
summary, the model is comprised of two concepts: 1) Cloud-
aware read-only pre-processing, and 2) dynamic on-the-fly
partitioning.

A. Cloud-aware pre-processing and indexing
In order to enable parallel access to unstructured scientific

data, a pre-processing phase is required. In Dataplug, each
supported format is required to define a pre-processing method
that must be applied to each raw data blob. This pre-processing
method is format-specific, and extracts metadata from the
raw data blob, such as internal content structure, indices, and
attributes.

For semi-structured or tabular formats like JSON or CSV,
generic pre-processing methods like schema inference [15] can
be applied. However, scientific unstructured data formats re-
quire domain-specific tools and techniques to extract valuable
metadata. Dataplug aims for an extensible approach, which
allows for flexibility in metadata and index structure, as well
as in the generation process. This approach ensures support of
virtually any file format.

We say our pre-processing and indexing approach is Cloud-
aware, which means that it is specifically optimized for
efficient data access in Cloud object storage. Cloud-aware
indexing focuses on exploiting the high-bandwidth capability
of object storage so that partitions can be retrieved using many
concurrent HTTP GET byte-range requests over large data
blobs. This approach differs from “traditional” pre-processing
in the following key aspects:

Read-only preprocessing: With Cloud-aware pre-
processing, raw data is pre-processed only once, without modi-
fying it, and the extracted metadata is decoupled from the data,
stored externally in another object, storage bucket, or database.
This approach maintains the original data unmodified, with
metadata automatically handled by Dataplug. Additionally, it
is effective for pre-processing data in object storage where
objects are immutable, meaning that in-place modifications
are not possible. As a result, pre-processing that is intrusive
to the data, such as transformation to a Cloud-optimized
format, is not ideal because it requires a complete data re-
write, significantly increasing pre-processing cost and data
movement.

Object storage-aware indexes: In object storage, data
access relies on HTTP, which introduces significant latency
as each chunked read requires a complete HTTP GET byte-
range request, compared to, for instance, parallel file systems.
To account for this limitation, Cloud-aware indexes optimize
data indexing by prioritizing large chunks and concurrent
reads, exploiting the object store’s high bandwidth. By lever-
aging concurrent requests, non-contiguous data portions can
be efficiently retrieved by requesting many HTTP GET byte-
range requests in parallel, partially mitigating the high latency
inherent to object storage [7].
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Figure 1: Comparison between Cloud-optimized data formats
and Cloud-aware data formats. In Cloud-optimized, metadata
is embedded in the blob, while Cloud-aware pre-processing
stores metadata decoupled from the blob.

To summarize, Figure 1 visually represents the indexing
difference between Cloud-optimized data formats and our
Cloud-aware approach. On one side, Cloud-optimized formats
1) re-arrange the blob’s content and 2) embed metadata and
indexes within the blob. On the other side, Cloud-aware
indexing 1) leaves raw data unmodified, as is, and 2) stores
the metadata decoupled from the raw data blob. These two
differences are key to why our model is more suitable for
Cloud object storage. Since object stores are immutable,
transforming files to Cloud-optimized is inefficient, requiring
a complete blob rewrite. Instead, our model stores indexes
(which are much smaller in volume) in another object, making
the pre-processing cost considerably lower.

B. Data slicing: Dynamic on-the-fly partitioning

After pre-processing and extracting metadata, applications
may request dynamic on-the-fly partitions of scientific datasets
that have been pre-processed using our Cloud-aware approach.
We refer to this process as data slicing.

A data slice is an entity that represents a lazily-evaluated
partition of an unstructured dataset in Cloud object storage.
It encapsulates partition metadata (such as byte ranges) and
code. When a data slice is evaluated, its embedded code
runs and fetches the actual partition data content from Cloud
object storage using its native APIs, typically through many
concurrent byte-range HTTP GET requests. Additionally, the
code can apply any necessary corrections to ensure integrity
for the data format, such as adding missing headers.

Data slices are generated for a specific dataset by applying
a partitioning strategy. In Dataplug, each data format can
define multiple partitioning strategies, allowing for different
criteria or partitioning parameters. Furthermore, users can
expand and implement their own strategies to address specific
cases for their workloads. Prior pre-processing of the dataset
is necessary so that strategies can query the corresponding
metadata and indexes for defining data slices.

Data slicing does not involve data movement. Instead,
partitioning strategies operate on the metadata and indexes
generated during the pre-processing stage, rather than directly
on the actual data. Ideally, the index data structure is fully
loaded in memory for efficient processing.

Once a set of data slices is generated, they may be dis-
tributed to remote workers. Each worker independently evalu-

ates a data slice and loads the corresponding data partition into
memory. This parallel and distributed process takes advantage
of the synchronization-free parallel access and high bandwidth
capabilities offered by object stores. To support remote worker
processes, data slices must be serializable.

IV. USE CASES

This section presents two unstructured scientific formats as
use cases for Dataplug from different domains: FASTQGZip
for genomic data and LiDAR for geospatial data. We demon-
strate the challenges associated with partitioning and parallel
access arising from the format’s structure combined with
the inherent limitations of object storage. We then elaborate
on how our data model enables partitioning and parallel
access from Cloud object storage for these formats. By using
fundamentally different formats, we showcase the flexibility
and versatility of Dataplug, as it can be adapted to various
unstructured scientific data formats across different domains.

A. Compressed genome FASTQGZip data

The FASTQ format [16] is used to represent genome
sequence read data and their quality values as text. To reduce
data volume, FASTQ files are usually compressed using GZip,
resulting in high compression ratios due to the repetitive nature
of genome sequence characters.

Challenge: The DEFLATE algorithm used in GZip poses
a limitation for parallel access because it is not possible to
decompress arbitrary portions of a GZip file, requiring to
process the entire stream from the beginning [17]. To partition
FASTQGZip or any compressed GZip file, a process must
create static partitions sequentially as the GZip stream is
decompressed.

Solution: We propose the use of GZip indexing combined
with parallel decompression. Our Cloud-aware FASTQGZip
utilizes GZiptool [18] to generate an index for a compressed
GZip file, allowing for random access decompression. This
index provides multiple entry points within the GZip file,
each associated with a line number in the uncompressed text.
We employ a FASTQGZip data slicing strategy based on
the number of sequences per partition, leveraging the GZip
indexes to determine the appropriate entry points for each
data slice line range [19]. Our approach is Cloud-aware,
enabling parallel access to FASTQGZip files stored in the
Cloud through concurrent HTTP range requests and parallel
decompression, resulting in high throughput.

B. LiDAR point cloud data

The LAS (Laser) binary file format [20] is commonly
used for storing LiDAR (Light Detection and Ranging) 3-
dimensional point cloud data that represents the Earth’s surface
morphology. In the LAS format, the point record body is not
arranged in any specific order. It typically corresponds to stripe
patterns formed by laser measurements during plane or drone
sweeps.



Challenge: Geospatial workloads often parallelize data
processing by partitioning large surfaces into smaller subre-
gions using bounding boxes [21]. However, accessing arbi-
trary land surface regions of a LAS file requires reading and
shuffling all point records, because a point belonging to a
particular region can be located anywhere in the file. This
limitation prevents parallel access to a LAS file, requiring it
to split into multiple files for partitioning. The COPC (Cloud-
optimized Point Cloud) format [8] addresses this issue by
arranging LiDAR points into nodes forming an octree. The
metadata describing the octree and node offsets is stored in
extensible LAS headers. Users can then partition a COPC
file by issuing multiple spatial queries over the octree to
retrieve nodes using byte-range HTTP GET requests. However,
adopting the COPC format for existing LiDAR data in object
storage requires a complete dataset rewrite. This is because
COPC modifies the point record of LAS files and embeds
metadata in extensible headers, significantly increasing the
complexity and cost of pre-processing.

Solution: Our proposed Cloud-aware LiDAR utilizes
lasindex from LAStools [22] for efficient in-place LiDAR
indexing. Our approach uses lasindex to pre-process LAS
files stored in Cloud object storage to generate a quadtree
point index without modifying the original file. By leveraging
this index, we implement strategies to define spatial partitions
within the LiDAR point cloud and determine the correspond-
ing quadtree nodes for each partition. Unlike LAStools, which
requires reading data from a local file system, our Cloud-aware
approach enables direct retrieval of point nodes from Cloud
object storage in parallel. Although Dataplug also supports
partitioning COPC data, our Cloud-aware approach is non-
intrusive as it only necessitates read-only pre-processing. This
is especially useful for large legacy datasets stored in LAS
format since transforming to COPC is more expensive than
our read-only pre-processing approach (see Section VI-B1).

V. Dataplug FRAMEWORK ARCHITECTURE

This section describes the architecture details of Data-
plug. Dataplug allows end-to-end management of the lifecycle
of unstructured data: from data pre-processing and staging to
data partitioning and delivery for scientific workloads in the
Cloud. Dataplug does not require any service to be running,
as it only comprises a client-side Python library for users to
interact with the framework. We chose Python because it is
currently the de facto programming language for distributed
scientific computing due to its simplicity but also because
of its ability to interact as glue code for high-performance
low-level scientific applications. The framework is compatible
with popular Python distributed computing frameworks such
as PySpark, Dask, and Ray, thus achieving portability for many
workloads.

A. Dataplug Cloud architecture and data life-cycle manage-
ment

This section describes the Dataplug Cloud architecture and
the full data management workflow life-cyle. Figure 2 depicts
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Figure 2: Dataplug architecture.

a big picture of Dataplug’s architecture.
1) Pre-processing: Raw data 1 is stored as objects in a

object storage bucket. This data is in its original, unprocessed
raw form. Notably, Dataplug does not require write permis-
sions to the source bucket, allowing to use read-only public
Open Data Repository buckets [10] as data sources.

Dataplug requires a pre-processing 2 phase to enable
parallel data access to the raw data. When a new object
is uploaded, Dataplug can leverage storage triggers to auto-
matically launch pre-processing jobs (for instance, using an
Amazon S3 trigger to invoke a Lambda function). In this
case, Dataplug can infer the matching format from the file
extension or the Content-Type header in order to launch
the corresponding Cloud-aware pre-processing method for that
particular format. Alternatively, users can manually submit
pre-processing jobs for cold data, by explicitly specifying
which Cloud-aware format the raw cold data complies to.
During the pre-processing stage, metadata and indexes are
generated from the raw data. This extracted information is
stored in a separate metadata bucket within the object storage.

Dataplug leverages joblib for deploying pre-processing
jobs. Regarding pre-processing scalability, Dataplug can use
Cloud-based scalable joblib backends (such as Dask) to
deploy and adapt the resources necessary to the raw data
volume. Each Cloud-aware format can specify pre-processing
parameters, like batch or parallel processing, CPU and mem-
ory resources and chunk size.

2) Partitioning: After the pre-processing stage, users can
leverage Dataplug to partition datasets for specific workloads
by applying a partitioning strategy 3 to define data
slices. Dataplug utilizes the metadata and indexes generated
during the pre-processing stage to query and extract the
necessary information for defining these data slices.

Once the data slices have been defined, the user can
proceed to submit a parallel processing job 4 using a
Python distributed computing framework such as Dask or
ipyparallel. The user may pass the set of data slices



created as input data for the job. The distributed computing
framework will handle the deployment of distributed workers
and appropriately scatter the data slices among them.

Finally, each worker process will be assigned a specific
data slice as input, allowing them to fetch the content of
the data partition 5 . Leveraging embedded metadata and
code, the data slice can efficiently perform multiple concurrent
byte-range HTTP GET requests over one or more objects in
the object store. These requests retrieve data chunks, which
are then assembled and processed to perform any necessary
corrections. Once the data partition has been retrieved and
prepared, it can be passed back to the worker to perform the
job.

Regarding partitioning scalability, dataplug relies on the un-
derlying distributed computing framework and on Cloud object
storage. Distributed workers among many virtual machines or
containers can effectively exploit the high bandwidth of object
storage by issuing many concurrent byte-range HTTP GET
requests when retrieving the data partitions.

B. Dataplug Workflow: a FASTQGZip format example

This section shows an overview of Dataplug’s programmatic
APIs. Using an example for the genomic FASTQGZip format,
we illustrate how Dataplug interfaces are used to manage pre-
processing and partitioning logic using code.

# Create Cloud Object reference
co = CloudObject.from_s3(

FASTQGZip,
's3://my_bucket/SRR123456.fastqgz'

)

# Preprocess object (this has to be done only once)
backend = AWSLambdaPreprocessor()
co.preprocess(backend,

sequence_identifier='SRR0000000')

# Apply partition strategy and get slices
data_slices = co.partition(

partition_num_reads,
num_seq_partition=1_000_000

)

# Define processing function
def process_sequences(data_slice: GZipTextSlice):
chunk = data_slice.get()
... # process fastq chunk
return result

# Submit distributed job with ipyparallel
# Data slices are used as input data
with ipyparallel.Cluster() as cluster:
view = cluster.load_balanced_view()
result = view.map(process_sequences, data_slices)

Listing 1: Full workflow example for an application using the
Cloud-aware FASTQGZip format with an example of parallel
processing using ipyparallel.

Listing 1 provides an example of the complete workflow
management for the Cloud-aware FASTQGZip format. Ini-
tially, a file is referenced using the key and bucket where
it is stored. Here we associate the FASTQGZip Cloud-aware
FASTQGZip format for this particular object.

Pre-processing is then applied to this file. Each supported
format in Dataplug must implement the pre-processing inter-
face for its pre-processing logic. An implementation of the
interface for FASTQGZip is shown in Listing 2. Following
the example, the referenced file is pre-processed using the
AWSLambdaPreprocessor backend, which executes jobs on
AWS Lambda serverless functions. Here, the job is manually
triggered for demonstration purposes, and this step has to be
performed once since the generated metadata and indexes are
reusable for any partitioning request.

Next, the partition_num_reads partitioning strategy is
applied to obtain a list of data slices, representing lazy-
evaluated partitions of the file. The interface for strate-
gies consists of a function with a signature that receives a
CloudObject as a parameter and returns a list of DataSlice
objects. The implementation for partition_num_reads can
be seen in Listing 3. This strategy computes the entry point
offsets within the GZip file for each partition, based on the
specified number of lines per partition. Alternatively, other
strategies can be implemented, such as partitioning based on
the total number of chunks rather than the chunk size.

Finally, a parallel job is launched using ipyparallel, with
the list of data slices as the input data for the job. Each user-
defined processing function receives a single data slice. The
interface for data slices consists of a class with a get()

method, which implements the logic to issue multiple byte-
range requests to object storage and retrieve the actual data
partition. The data slice implementation for FASTQGZip is
shown in Listing 4. A format slice must implement the get()
method, which will be called by the worker code to evaluate
the slice and retrieve the corresponding decompressed FASTQ
sequence chunk for that particular slice.

@FormatPreprocessor(FASTQGZip)
class FASTQGZipPreprocessor(BatchPreprocessor):

def preprocess(self, cloud_object: CloudObject)
-> PreprocessingMetadata:

blob = self.s3.get_object()
...
return PreprocessingMetadata(gzip_index)

Listing 2: FASTQGZip implementation of the Cloud-aware
pre-processing interface.

@PartitioningStrategy(FASTQGZip)
def partition_num_reads(cloud_object: FASTQGZip,

num_reads: int) -> Iterator[FASTQGZipSlice]:
gzip_index = cloud_object.metadata
byteranges = ...
for byterange in byteranges:
yield FASTQGZipSlice(byterange)

Listing 3: A partitioning strategy function interface implemen-
tation for the FASTQGZip format.

VI. USE CASES EVALUATION

In this section, we validate our framework and data model.
The main objectives of this validation are 1) demonstrate that
Cloud-aware pre-processing significantly reduces costs both



class FASTQGZipSlice(CloudObjectSlice):
def get(self):
blob_chunk = self.s3.get_object(self.byterange)
fastq_chunk = ...
return fastq_chunk

Listing 4: A data slice interface implementation for the
FASTQGZip format.

in terms of compute time and storage without introducing
partitioning overhead, and 2) demonstrate the benefits of
dyanamic on-the-fly partitioning (to avoid in-cluster parti-
tioning, and to allow zero-cost re-partitioning to probe for the
optimal partition size).

We employ the Cloud-aware implementations of the scien-
tific unstructured data formats discussed in Section IV: Cloud-
aware LiDAR and Cloud-aware FASTQGZip.

All validations were conducted on Amazon Web Services in
the us-east-1 (North Virginia) region during 2023. The data
is stored in Amazon S3 buckets located within the same region.
Further specific configurations, such as EC2 instance type, are
detailed for each experiment. Reproducible experiment code
can be accessed publicly in Github3.

A. FASTQGZip compressed genomic data
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Figure 3: Comparison of pre-processing time to generate
static partitions and Cloud-aware indexing for different input
FASTQGZip data sizes.

1) Pre-processing comparison between Cloud-aware and
static partitioing approaches: In this experiment, we want to
compare the time required to generate static partitions and the
time required to apply Cloud-aware indexing for different data
volumes of FASTQGZip data.

To generate static partitions, we use a script (Listing 5)
that employs the aws CLI, zcat, and split commands. This
script reads a compressed file from S3, splits it into partitions
with a specified number of lines, and writes the partitions back
to S3 in a pipe stream. We also created a modified version of
the script that compresses the chunked data using the gzip

command before uploading it to storage, using the fastest

3https://github.com/aitorarjona/dataplug-validation

aws s3 cp s3://$BUCKET/$KEY - | zcat -
| split -l $CHUNK_LINES
--filter='aws s3 cp - s3://$BUCKET/$KEY-parts/$FILE'

Listing 5: Bash script to partition a FASTQ file from S3 in
streaming, which writes back the output partitions to S3.

FASTQGZip File Size GZip Index Size % of original file size

1 GB 3.1MB 0.31%
3 GB 9.7MB 0.32%
5 GB 17.6MB 0.35%
8 GB 27.4MB 0.34%
13 GB 45.0MB 0.35%

Table I: GZip index size ratio for each FASTQGZip file pre-
processed.

compression ratio. Each partition is approximately 850MB
of decompressed size per partition.

For the Cloud-aware pre-processing approach with Data-
plug, we employ the method described in Section IV. Our
pre-processing reads the input file from S3 in a stream and
generates a GZip index using gztool. This index can be then
used to query the GZip file to retrieve specific chunks and
decompress them on-the-fly.

For the data, we used various samples of FASTQ readings
from the dataset published in [23], concatenating several
samples to generate large files. For both experiments, we used
a t2.xlarge instance on AWS EC2.

Figure 3 shows the execution times for pre-processing
different input FASTQGZip file sizes using both static par-
titioning and Cloud-aware indexing approaches. The results
demonstrate that Cloud-aware indexing of GZip files is up to
×2.9 faster than generating static partitions.

While both approaches involve reading and decompressing
the entire GZip stream, generating static partitions requires an
additional step of writing the chunked data back to storage,
which increases the pre-processing time. This effect is further
amplified if the partitions are compressed before being up-
loaded to storage. Specifically, for an input compressed file
size of 13.8GB (74.8GB decompressed), the pre-processing
time is reduced by 65.6% when using the GZip index gener-
ation approach compared to generating static partitions.

However, employing Cloud-ware FASTQGZip implies an
extra cost in metadata storage, as we have to account for the
storage of the GZip index file. Table I presents the sizes of
the GZip indexes for each pre-processed file. We see that the
storage cost of the indexes is nearly negligible compared to
the original data volume size, as it accounts for only 0.35%
of it.

Since the pre-processing time for static partitioning and
indexing exhibit a linear relationship with the file size (r2 =
0.9999), we can extrapolate the results for larger volumes. For
instance, for 100TB of FASTQGZip data, static partitioning
would occupy ≈ 2498 hours of aggregated vCPU time,
while indexing would occupy ≈ 876 hours. In other words,
processing 100TB of data with our Cloud-aware approach

https://github.com/aitorarjona/dataplug-validation
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Figure 5: Partitioning and processing runtime for different
chunk sizes of a large FASTQGZip file.

would save ≈ 1622 hours of compute time for on-demand
t2.xlarge instance type (≈ 65% less).

2) On-the-fly partitioning overhead: We measure the time
taken to fetch a partition of ≈ 850MB using different meth-
ods: static FASTQGZip compressed chunks, static FASTQ
decompressed chunks, and on-the-fly partitioning with Cloud-
aware FASTQGZip. The partitions are retrieved from server-
less functions in AWS Lambda, with a memory configuration
of 2048MB each.

Figure 4 displays the results of the experiment. From it, we
can observe that fetching a partition with Cloud-aware on-the-
fly partitioning and decompressing it significantly lowers the
average fetch time (5.81 s) compared to obtaining the static
decompressed partition (21.72 s). On the other hand, the fetch
time for static compressed partitions is similar in both cases.
This difference in fetch time can be attributed to the fact
that it is faster to download a smaller compressed payload
from object storage and decompress it in memory compared
to downloading a larger volume of already decompressed data.

3) Chunk size probing with dynamic partitioning: One
of the key benefits of dynamic partitioning is that, after
pre-processing only once, a dataset can be re-partitioned at
different chunk sizes without any penalty. With this, it becomes
trivial to quickly probe many different chunk sizes and to find
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Figure 6: Full workload runtime and cost using Dask for
processing a large FASTQGZip file using different number
of partitions and workers.

out the most optimal one for a specific workload.
To demonstrate this advantage, we ran a workload consisting

of common FASTQ data-parallel processing (filtering using
fastq-filter 4 and deduplication using czid-dedup 5)
for the large 13.8GB file (74.8GB decompressed) from the
previous experiments. We used Dask with an EC2 cluster
and dask.bag to distribute the workload in AWS, using
m6i.2xlarge instance nodes as workers.

For this experiment, we sampled 7 partition sizes ranging
from 600MB to 3GB (decompressed size) of the 13.8GB
compressed FASTQ file and measured the time elapsed to
fetch the partition and process it. The results can be seen in
Figure 5. We observe that after 900MB for chunk size, the
performance improvement is no longer substantial. Specifi-
cally, it only improves by 3% with respect to the previous
largest size, which indicates that from 85 partitions and up, the
performance improvement of parallelism is no longer relevant,
and using more partitions will only add further overhead.
To assess our assumption, we run the full workload with all
partition sizes and measure scaling time, processing runtime,
and cost. We can see from the results in Figure 6 that, indeed,
900MB as partition size corresponding to 85 partitions and 11
workers is the configuration that offers the best runtime/cost
ratio.

Main takeaway: Although both static partitioning and
GZip indexing achieve parallel read access for compressed
GZip files, the cost of Cloud-aware pre-processing for
FASTQGZip is considerably lower compared to static par-
titioning. Moreover, our evaluation shows that dynamically
partitioning and decompressing data on-the-fly is faster than
retrieving compressed static partitions for FASTQGZip ge-
nomic data, as the compression of partitioned data adds
extra computational overhead. Finally, dynamic partitioning
of FASTQGZip files allows us to sample different partition
sizes with no additional cost, and to probe the performance,
which helps in deciding how many resources to deploy and the
optimal number of partitions to process a particular dataset.

4https://github.com/LUMC/fastq-filter
5https://github.com/chanzuckerberg/czid-dedup

https://github.com/LUMC/fastq-filter
https://github.com/chanzuckerberg/czid-dedup
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Figure 7: LiDAR workflow tasks and runtime on a Ray autoscaling cluster, for both data partitioning approaches.

50

100

150

Pr
ep

ro
ce

ss
in

g
tim

e 
(s

)

COPC Cloud-Aware LiDAR

50 100 150 200 250 300
Input LAZ size (MB)

100

102

M
et

ad
at

a
siz

e 
(M

B)

Figure 8: Pre-processing compute time and metadata size
overhead comparison for COPC and Cloud-aware LiDAR.

B. LiDAR Point Cloud data

1) Pre-processing comparison between Cloud-aware and
static partitioing approaches: Our objective is to compare
the pre-processing costs of LiDAR data using two different
approaches: our Cloud-aware pre-processing model based on
LASindex, and format transformation pre-processing model
based on the Cloud-optimized Point Cloud format.

For this experiment, we used a dataset obtained from the
United States Geological Survey 6, consisting of 100 different
LAZ files, ranging in size from 10MB to 300MB, with a total
compressed dataset size of 13.8GB. We utilized a t2.xlarge
instance type in AWS EC2 to perform the pre-processing jobs.

The results are shown in Figure 8. For both approaches,
pre-processing time and metadata size overhead exhibit a
linear relationship with the input data file size. However, in
comparison, Dataplug’s Cloud-aware pre-processing approach
proves to be faster and requires less metadata storage volume

6https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/
Projects/CA YosemiteNP 2019 D19/CA YosemiteNP 2019/

compared to COPC. Specifically, there is a mean difference of
47.63 s in pre-processing time and 59.65MB in metadata size
overhead. In other words, for this dataset, Dataplug achieved
an average reduction of 71.31% in pre-processing time and
99.78% in metadata volume size.

The reason for these results lies in the nature of Cloud object
storage, which does not allow for in-place data modification.
Consequently, when transforming a LiDAR dataset to the
COPC format, all data has to be copied back to storage after
transformation. In contrast, our Cloud-aware approach avoids
this requirement by only reading the input data and storing
metadata separately, resulting in a more efficient approach for
Cloud object storage-based workloads.

2) On-the-fly partitioning in auto-scaling clusters: Next,
we validate on-the-fly partitioning for LiDAR data in a geospa-
tial data-parallel workflow that consists in generating digital
terrain elevation models (DEMs), which is a common task
in LiDAR data processing [24]. We have implemented the
workflow using the PDAL [25] tool to generate DEMs from
LiDAR files which are stored in an S3 bucket.

We want to compare the execution time of two workflow
runs for the same dataset, one with in-cluster partitioning and
one with on-the-fly partitioning of LiDAR data.

In the in-cluster partitioning run, the LiDAR files are read
from the S3 bucket in parallel (one task per file), partitioned
into equal-sized chunks, and stored within the cluster’s tem-
porary storage. On-the-fly partitioning avoids performing the
partitioning step since partitions can be retrieved directly from
Cloud object storage by means of data slicing. We consider
static partitioning as part of the workload runtime, as the
partitioning is specific for this workload. On the contrary, the
metadata for on-the-fly dynamic partitioning is reusable and
can be leveraged in many different workloads with different
partition sizes.

To run this experiment, we used Ray [26] with autoscaling
enabled on AWS EC2 with c5.12xlarge as VM worker
nodes (48 vCPUs, 96 GB RAM) and an m5.xlarge VM for
the head node. We utilized 55 LiDAR files of the dataset men-
tioned earlier as input, with an average size of 125MB each.

https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/CA_YosemiteNP_2019_D19/CA_YosemiteNP_2019/
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/CA_YosemiteNP_2019_D19/CA_YosemiteNP_2019/


The total volume of uncompressed data for this experiment
was 53.0GB.

Figure 7a shows the in-cluster data partitioning run, and
Figure 7b shows the on-the-fly data partitioning run. We see
that on-the-fly partitioning of Cloud-aware LiDAR provides
a clear advantage in runtime compared to the in-cluster
partitioning approach, as the in-cluster partitioning phase is
not necessary with on-the-fly partitioning. Although Ray takes
≈ 50 s to deploy and prepare a VM worker to be ready to
run tasks, all job tasks are created at the beginning of the
workflow, leading to earlier autoscaling events issued by Ray
and achieving a sooner and higher degree of parallelism. In
total, the Cloud-aware LiDAR partitioning approach reduced
the workflow runtime by 110.03 s (27.82% faster).

Main takeaway: The adoption of Cloud-aware indexing
for LiDAR data offers clear benefits, mainly a significant re-
duction in pre-processing compute costs and metadata volume.
Additionally, on-the-fly partitioning eliminates the need for in-
cluster partitioning, resulting in more efficient workloads on
auto-scaling clusters.

VII. CONCLUSION

Efficient data partitioning is essential in scientific comput-
ing to fully benefit from the Cloud’s elastic resources, but
chunking a large dataset into smaller files is unsuitable in the
extreme data era. In this article, we propose a Cloud-aware
data partitioning model, which consists in generating metadata
using read-only pre-processing that allows to define dynamic
logical partitions of large unstructured datasets. Distributed
workers can then retrieve dynamically-sized partitions directly
from object storage, exploiting its high bandwidth capability.
We implement this data partitioning model with Dataplug, an
extensible framework with the aim of providing partitioning
semantics to many unstructured scientific data formats. We
demonstrate, using two representative formats from different
domains (genomics and geospatial), that dynamic on-the-
fly partitioning lowers pre-processing costs without incurring
additional overheads. We have open-sourced the framework in
order to facilitate the adoption of data-parallel scientific work-
loads in the Cloud. Future research directions may involve
dynamic partitioning and machine learning to determine the
optimal partition size based on the workload characteristics
and available resources.

ACKNOWLEDGMENT

This work has been partially funded by the European
Union through the Horizon Europe NEARDATA (101092644),
CLOUDSTARS (101086248), EXTRACT (101093110) projects
and by the Spanish Ministry of Economic Affairs and Digital
Transformation and the European Union-NextGenerationEU
(frameworks PRTR and the MRR), through the CLOUDLESS
UNICO I+D CLOUD 2022 project. Aitor Arjona is a URV
Martı́ Franquès grant fellow.

REFERENCES
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