
Serverful Functions: Leveraging Servers in Complex Serverless
Workflows (industry track)

Germán T. Eizaguirre
germantelmo.eizaguirre@urv.cat

Universitat Rovira i Virgili
Tarragona, Spain

Daniel Barcelona-Pons
daniel.barcelona@urv.cat
Universitat Rovira i Virgili

Tarragona, Spain

Aitor Arjona
aitor.arjona@urv.cat

Universitat Rovira i Virgili
Tarragona, Spain

Gil Vernik∗
gilv@il.ibm.com
IBM Research
Haifa, Israel

Pedro García-López
pedro.garcia@urv.cat

Universitat Rovira i Virgili
Tarragona, Spain

Theodore Alexandrov†
theodore.alexandrov@embl.de

EMBL
Heidelberg, Germany

Abstract
The scalability of cloud functions makes them a convenient backend
for elastic data analytics pipelines where parallelism changes dras-
tically from one stage to the next. However, cloud functions require
intermediate storage systems for communication, which limits the
efficiency of stateful operations. Furthermore, cloud functions are
expensive, which reduces the cost-effectiveness of pure serverless
architectures. We propose a hybrid architecture for data analyt-
ics that uses cloud functions for embarrassingly parallel stages
and virtual cloud instances for stateful operations under a unified
serverless programming framework. Extending Lithops, a server-
less programming library, we implement a parallel programming
interface that proactively provisions serverless and serverful cloud
resources with minimal user intervention. We validate the feasi-
bility of a hybrid architecture, by comparing it to fully serverless
and serverful versions of a production-level metabolomics pipeline.
We show that mixing cloud functions with virtual instances in-
creases the cost-effectiveness of the execution by up to 188.23%
over the serverless implementation, while achieving a speedup of
3.64 compared to the serverful one.

CCS Concepts
• Computer systems organization→ Cloud computing; • The-
ory of computation → Distributed computing models.

Keywords
Cloud computing, serverless computing, function-as-a-service, re-
source allocation, resource efficiency
ACM Reference Format:
Germán T. Eizaguirre, Daniel Barcelona-Pons, Aitor Arjona, Gil Vernik,
Pedro García-López, and Theodore Alexandrov. 2024. Serverful Functions:
Leveraging Servers in Complex Serverless Workflows (industry track). In
∗This work was done while this author was affiliated with IBM Research.
†This work was done while this author was affiliated with EMBL.

This work is licensed under a Creative Commons Attribution International 4.0
License.
MIDDLEWARE Industrial Track ’24, December 2–6, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1319-4/24/12
https://doi.org/10.1145/3700824.3701095

25th International Middleware Conference Industrial Track (MIDDLEWARE
Industrial Track ’24), December 2–6, 2024, Hong Kong, Hong Kong. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3700824.3701095

1 Introduction
Serverless services are a practical approach to making the Cloud
more accessible, as much of the management burden is abstracted
away by the cloud provider. Serverless functions —or Function as a
Service (FaaS)— such as AWS Lambda [3] are the leading embodi-
ment of the serverless paradigm: stateless, event-driven, ephemeral
computations with low start-up latency and broad concurrency.
FaaS provides a convenient pay-as-you-go billing model and intu-
itive, easy-to-use abstractions over the underlying resources. Devel-
opers can deploy their code to the Cloud in seconds, running in a
secure, isolated and managed environment that auto-scales during
peak demand and to zero when there is none.

The potential of serverless services has not gone unnoticed in
data analytics; particularly in elastic multi-stage workloads where
the number of parallel tasks changes drastically from one stage
to another. Traditional cluster technologies on virtual machines
(VMs) often fall short in such scenarios due to expecting a fixed
pool of resources or slow (if any) auto-scaling capabilities. These
conditions lead to a mismatch between cluster size and resource
requirements in elastic multi-stage workloads, resulting in overpro-
visioning (where more resources are provisioned than needed, lead-
ing to inflated costs), or underprovisioning (where fewer resources
are provisioned than required, leading to degraded performance).
Serverless functions address this issue more efficiently, quickly scal-
ing out and in based on the needs of the workload, and fitting the
exact resource requirements of each stage.

However, serverless functions face a major limitation: they are
ephemeral, making them non-addressable and stateless, thus depen-
dent on external disaggregated storage for communication. Func-
tions are not suitable for complex communication patterns like
sorting, grouping, or re-partitioning, which require extensive data
sharing between workflow stages. These stateful operations are
a significant performance challenge for serverless data analytics
due to the load placed on the storage. Overloading the storage
slows down I/O throughput, reduces CPU utilisation, and hurts
cost-efficiency. As the number of functions per stage increases,
so does the number of storage requests, gradually degrading I/O
performance and exacerbating resource waste.

15

https://doi.org/10.1145/3700824.3701095
https://doi.org/10.1145/3700824.3701095
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3700824.3701095&domain=pdf&date_stamp=2024-12-02

MIDDLEWARE Industrial Track ’24, December 2–6, 2024, Hong Kong, Hong Kong G. T. Eizaguirre, D. Barcelona-Pons, A. Arjona, G. Vernik, T. Alexandrov, and P. García López

Service Execution time

AWS Lambda 12.56 s
AWS EC2 42.34 s
AWS EMR Serverless 134.87 s

Table 1: Total execution time of a map operation involving 100
CPU-bound functions, each with a runtime of five seconds,
measured across multiple services. Times include resource
provisioning and deprovisioning time. AWS Lambda uses
1769 MB of memory per function. EC2 uses an m6a.32xlarge
instance with 128 vCPUs created from a pre-built AMI. EMR
Serverless runs with its default execution parameters.

The drawbacks of serverless functions motivate the exploration
of alternatives for extensive data sharing between stages. We ar-
gue that, with sufficient abstraction, serverful (VMs) and serverless
(functions) resources can be seamlessly combined within a complex
workflow. By deploying servers in a serverless flavour, i.e., launching
select workflow stages on a short-lived, right-sized VM, we mitigate
the limitations of functions to achieve fast state sharing in stateful
phases with minimal developer intervention. With proper optimi-
sation, the overhead of creating VMs becomes feasible to launch
stateful stages (Table 2), as the cost of (indirect) communication in
serverless functions would be prohibitive.

Combining the virtues of serverful and serverless components in
the same workload has been hinted previously [15, 24, 28], but its
viability has not been proven in real environments. In this article,
we bridge the gap between serverless and serverful technologies
by transparently integrating VMs into serverless analytics. We do
this by extending Lithops, a serverless programming library, with
the ability to leverage hybrid architectures. With minimal in-code
changes, a developer can choose to seamlessly run their parallel
code on either serverless functions or VMs.

Hybrid serverless architectures: what fits?
Hybrid architectures are well-suited for big data pipelines that com-
bine stateful data preparation with embarrassingly parallel data pro-
cessing stages— a common pattern in fields such as omics [5, 19]. By
integrating cloud VMs and cloud functions, we enable rapid vertical
scalability, which is crucial for in-place data preparation, alongside
rapid horizontal scalability to efficiently manage embarrassingly
parallel stages.

We demonstrate the potential of hybrid architectures by optimis-
ing a production-readymulti-stage metabolomics pipeline. Develop-
ers at the European Molecular Biology Laboratory (EMBL) employ
an image spectrometry annotation pipeline that originally run on a
fixed, serverful Spark deployment in the Cloud that was difficult to
scale and provision at the right size. To manage the high elasticity
of the pipeline, they chose to leverage FaaS as their computation
backend [36]. However, the initial implementation suffered from
the limitations of cloud functions for stateful operations, especially
as the input size increased and the number of parallel functions
scaled out. With the contributions of this paper, the pipeline uses a
novel architecture that successfully combines cloud functions with
VMs, vertically scaled on demand for stateful operations. Overall,

the hybrid deployment of the pipeline is 188.23%more cost-efficient
than a deployment based entirely on cloud functions, while still
achieving a 3.64× speedup over the original serverful architecture.

2 Serverful backends for serverless analytics
2.1 Integration of serverful backends
We construct our framework for hybrid pipeline development on
Lithops, an out-of-the-box Python framework for serverless data
analytics. Function executors are the basic handlers in Lithops:
through a set of straightforward primitives, executors port paral-
lel function calls to cloud functions, keeping developers agnostic
about background resource management. The original architecture
of Lithops executors launches one logical function per cloud func-
tion instance and automatically monitors its execution via object
storage. We extend Lithops with a set of serverful backends for dif-
ferent cloud providers, allowing users to launch logical functions in
cloud virtual server instances (VMs). We automate the deployment
and configuration of VMs using custom images, including their
complete set of dependencies. It is the executor that chooses, based
on user-defined preference, to use existing, previously configured
VMs, or to create new ones.

create

reuse

Executor

Bucket

map(, [])

monitor & gather

Worker

Worker

Master

Figure 1: Serverless functions over serverful resources with
Lithops on AWS.

Figure 1 illustrates howwe perform serverless function calls over
serverful virtual instances. For each concurrent call, the executor
connects to a master instance on a dedicated VM that is provisioned
and managed by the Lithops client via SSH. The master identifies
available resources and proactively provisions the required VMs for
the call, if necessary. It then creates workers in the VMs via SSH,
based on their CPU capacity. Workers load logical functions from a
Redis server running in the master, execute them and write their
results back to object storage, while the master monitors function
completion and collects the output. Once all logical functions have
been completed, all resources are automatically stopped.

Overall, serverful execution is performed in a serverless man-
ner, automatically provisioning and deprovisioning resources and
keeping virtual instances active only for the execution time. Given
that cloud functions are inherently ephemeral and stateless, each
of its logical functions operates in a separate Docker container.
Workers within a VM, instead, run as processes within the same

16

Serverful Functions: Leveraging Servers in Complex Serverless Workflows (industry track) MIDDLEWARE Industrial Track ’24, December 2–6, 2024, Hong Kong, Hong Kong

container, enabling logical functions to access the same shared
memory namespace and exploit locality in data exchanges.

from lithops import FunctionExecutor, Storage

storage = Storage()

def create(x):
return storage.put_cloudobject(x)

def double(cobj):
obj = storage.get_cloudobject(cobj)
obj *= 2
return storage.put_cloudobject(obj)

Lambda execution
exec = FunctionExecutor(backend = "aws_lambda")
exec.map(create, ["a", "b", "c"])
cobjs = fexec.get_result()

VM execution
exec = FunctionExecutor(backend = "aws_ec2")
exec.map(double, cobjs)
cobjs = fexec.get_result()

objs = [storage.get_cloudobject(o) for o in cobjs]
print(objs)
> ["aa", "bb", "cc"]

Listing 1: Execution of parallel code with Lithops hybrid
backends.

2.2 Lithops’ seamless programming framework
Our objective with Lithops is to optimize resource transparency in
Cloud development. With that in mind, we minimize code changes
to use one backend or another (serverless or serverful). The entry
point to Lithops execution is the FunctionExecutor, which de-
ploys the scheduler and conducts the subsequent function calls. As
all executors share the same primitives, users only need to specify
their desired backend and run their code. Stages running on differ-
ent backends can easily communicate data using Lithops’ native
CloudObjects. CloudObjects run over the underlying object stor-
age system and provide an intuitive interface for sharing Python
objects between decoupled components. Taken together, the data
sharing abstractions and the serverless and serverful function execu-
tors provide an out-of-the-box interface to seamlessly implement
hybrid architectures, as exemplified in Listing 1.

Lithops is the result of the joint efforts of Universitat Rovira
i Virgili (URV) and IBM, integrating the refined outcomes of the
CloudButton1, Neardata2 and CloudSkin3 European projects, and
it has been developed incrementally [31] to its ongoing stable
version. The backends for serverful resources proposed in the
present work are publicly available in Lithops’ Github repository:
https://github.com/lithops-cloud/lithops.

3 Related work
Research in serverless analytics is prosperous, specifically in the
use of cloud functions for data analytics. PyWren [21] proposes
a programmatic framework for embarrassingly parallel jobs over
1https://cloudbutton.eu/
2https://neardata.eu/
3https://cloudskin.eu/

AWS Lambda, while mu [14] and gg [13] port local parallel applica-
tions to cloud functions using lightweight containers. Wukong [7]
executes directed acyclic graphs (DAGs) over cloud functions with
a distributed recursive scheduling algorithm. There are even pro-
posals for running local multiprocessing libraries transparently on
top of cloud functions [4]. However, none of these allow explicit
switching between cloud functions and alternative cloud backends
via the same programming framework.

State sharing between cloud functions has also been covered
previously [6, 22, 35], but mostly focused on non data-intensive
coordination. The literature on optimising data exchanges across
cloud object storage is broad [26, 32, 33]. However, they share the
problem of throughput saturation at high levels of parallelism. Lo-
cus [28] introduces the idea of augmenting object storagewith Redis
instances [30], but delegating its provisioning and management to
the user. We instead focus on delivering a completely serverless
experience to the end developer.

The use of virtual instances for serverless exchanges is addressed
by SPRIGHT [29], which demonstrates the benefits of passing data
through shared memory in serverless environments. SONIC [24]
identifies the optimal method for communicating functions based
on the workload and places functions accordingly. They evaluate
the use of intermediate virtual machines, object storage and shared
memory. However, neither SPRIGHT nor SONIC can run in com-
mercial cloud functions and require a dedicated cloud deployment.
Lithops functions fully work over commercial cloud services.

Hybrid architectures stand out in the data analytics ecosystem
for their agility and flexibility. Some established frameworks, such
as Dryad [20], directly do not have out-of-the-box autoscaling capa-
bilities. Others do provide resource autoscaling —e.g., Nextflow [11],
Dask [10] or cloud-hosted Spark services [1, 2, 17, 18]. However,
their autoscaling is reactive, slowly adjusting resources based on
real-time workload demands, which is not a match for the rapid de-
ployment of cloud functions. Additionally, they typically scale only
horizontally, making fully in-memory operations unfeasible for
large input sizes. BigQuery [16], a fully managed database service,
provides automatic and high performance scalability but is focused
on SQL queries, rather than domain-specific pipeline programming,
and it can result in higher billing than cloud functions at stateful
operations [32].

Lithops, along with Modal [25] and Coiled [8], is the only out-of-
the-box, actively maintained serverless data analytics framework.
However, Modal and Coiled charge users supplementary commis-
sions for managing cloud resources. Lithops is open source, does
not incur into additional fees and runs directly on the developer’s
cloud account, so developers have complete transparency over
their workloads and only pay for their Cloud utilisation. It has
been and is being used as an architectural building block in ge-
nomics [5], geospatial analysis [9] and machine learning [34]. For
example, the European Molecular Biology Laboratory’s (EMBL)
METASPACE [27] is currently using Lithops at production level
in its metabolomics data space. The number of cloud computing
research prototypes based on Lithops is also broad [6, 12, 23, 32, 33].
Its maintainers have collected a representative set of serverless

17

https://github.com/lithops-cloud/lithops

MIDDLEWARE Industrial Track ’24, December 2–6, 2024, Hong Kong, Hong Kong G. T. Eizaguirre, D. Barcelona-Pons, A. Arjona, G. Vernik, T. Alexandrov, and P. García López

pipelines that validate its adaptability, the compilation of which is
publicly available.4

4 Use case validation
4.1 Serverless data analytics in a metabolomics

data space
To illustrate the value of integrating serverful components into
serverless pipelines, we will describe our experience optimising
the METASPACE metabolomics annotation pipeline. Within the
METASPACE data hub [27], users are provided an annotation
pipeline to identify metabolites in imaging mass spectrometry
((I)MS) datasets —i.e., ion spectra measurements of narrow bio-
logical tissue sections. The annotation pipeline receives as input (1)
a dataset, the result of an IMS essay and (2) a database of formulas
with predictable MS signals. The signals ascribed to the pixels of the
dataset —each corresponding to a physical location in the tissue—
are compared with the signals in the database. As a result, plausible
metabolites in the sample are detected, along with their location.
The pipeline is currently publicly available and actively used by
hundreds of researchers worldwide.

Annotation starts with database formula generation, with a max-
imum of a few hundred parallel tasks. It then sorts and partitions
the input dataset and database over a series of stateful operations.
Finally, the dataset and database are compared in a series of embar-
rassingly parallel stages. With dataset sizes ranging from a fewMBs
to hundreds of GBs, the maximum parallelism of the pipeline can
vary significantly between workloads. In fact, metabolite annota-
tion shows great elasticity, as the parallelism of a workload ranges
frommodestly parallel stages (e.g., 32 tasks in database partitioning)
to massive concurrency in its final stages (reaching up to a few
thousand parallel tasks in a typical annotation job). The increase in
parallelism is super-linear with respect to the size of the dataset, as
the comparison between the dataset and the database formulas is
Cartesian, requiring a data-driven, scalable architecture.

METASPACE has successfully migrated from a cluster-based
Spark implementation of this pipeline to a Lithops implementation
using cloud functions. Metabolite annotation is an ideal candidate
for serverless architectures: with data volumes ranging from a few
to hundreds of gigabytes and the inherent elasticity of workloads,
it is impractical to allocate precise resources for every job’s needs.
Cloud functions allow us to provision the exact resources required
for each stage, as illustrated in Figure 2, quickly and efficiently.

We compare the Spark implementation of the pipeline, using the
original configuration adopted by METASPACE for its data hub
—four c5.4x large AWS EC2 instances, providing a total of 64 vCPUs
and 128GB of physical memory— with a serverless implementation
on Lithops, using AWS Lambda and AWS S3 as the compute and
storage backends, respectively. We exclude cluster configuration
and initialisation times from our experiments, and run them on
an out-of-the-box deployment. As annotation jobs vary in terms
of imaging dataset and molecular database size, we evaluate three
different jobs, which are roughly characterised in Table 2. Brain is a
small, testbed input, while Xenograft would have the closest traits
to a typical METASPACE job.

4https://github.com/iAmJK44/serverless_benchmarks

Stages
0

1K

2K

C
on

cu
rr
en

cy

		84 		32 		32
	256

		28 		28
	256 	256 	256

		32

2484

		96 		16

1002

		84 		32 		32
	256

		28 		28
	256 	256 	256

		32

2484

		96 		16

1002

Stateless	operations
Stateful	operations

Figure 2: Number of concurrent cloud functions per stage
in the serverless annotation of Xenograft. Stages involved
in stateful operations are represented in red, while fully
stateless stages are grey.

Figure 3 shows the execution time of the jobs studied in the
serverless implementation and in Spark. Using serverless compo-
nents instead of a cluster with a fixed pool of VMs can reduce
annotation time by up to 81%. As input data increases, the number
of resources required in terms of vCPUs andmemory becomes more
pressing, eventually leading to cluster under-provisioning. Even
when provisioned at runtime, the elasticity of serverless resources
compensates for their startup time in typical annotation jobs, with
a speedup of 2.50 in Xenograft.

In Table 3 we examine the resource utilisation of each implemen-
tation by measuring its CPU usage during Xenograft. In the Spark
implementation, the available compute resources remain constant
from end to end. With serverless components, however, resources
depend on the number of functions provisioned and running at
a given time —including the Lithops scheduler. As expected, the
serverless architecture delivers an average of 20% better CPU utili-
sation, as functions are provisioned and deprovisioned elastically.
This stabilises resource utilisation, reducing the standard deviation
by more than 20%. Similarly, the absolute minimum CPU usage
with cloud functions is 35%, far from 0%, as resources are rapidly
deprovisioned after each stage, effectively mitigating possible un-
derprovisioning scenarios.

4.2 The serverless sort hindrance
Overall CPU usage masks the problem of data sharing, though.
Segregating stateful operations at Table 3 discloses a resource utili-
sation unefficiency in both implementations, as CPU usage does
not surpass 50% in none of them. In the serverless deployment, a
prolonged underutilisation of CPU resources is associated with in-
tensive communication and its consequent increase of I/O latency.
This is the case for the distributed dataset and database sorting
and partitioning operations, which require I/O-intensive all-to-all
exchanges through AWS S3 [33] and comprise several stages in the
pipeline.

Underutilising serverless resources comes at a price. Consider-
ing an on-demand c5x4large EC2 instance, the cost of a vCPU is
0.12e−4 $/s.5 AWS Lambda, on the other hand, given that 1769 MB
of run-time memory is the equivalent of a single vCPU,6 is charged
at 0.28e−4 $/s7 (both services running at us-east, 30 June 2024).
As well as doubling the cost of VMs per second, AWS Lambda also
5https://aws.amazon.com/ec2/pricing/on-demand/
6https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
7https://aws.amazon.com/lambda/pricing

18

https://github.com/iAmJK44/serverless_benchmarks
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://aws.amazon.com/lambda/pricing

Serverful Functions: Leveraging Servers in Complex Serverless Workflows (industry track) MIDDLEWARE Industrial Track ’24, December 2–6, 2024, Hong Kong, Hong Kong

Dataset name Abbreviation Dataset size (GB) Database size (#formulas) Max Data Volume (GB)

Brain02_Bregma1-42_02 Brain 0.05 12k 37.45
CT26_xenograft Xenograft 1.80 74k 235.98
X089-Mousebrain_842x603 X089 7.01 29k 174.33

Table 2: Proposed METASPACE job setups. "Dataset size" represents the size of the imaging spectrometry sample. "Database
size" counts the number metabolites, whose spectra and its derivatives’ will be inspected in the dataset. Last column shows the
maximum data volume that is processed in a single stage.

CPU Usage Cloud functions Spark

Average 72.76% 53.53%
Standard deviation 19.02% 42.19%
Maximum 99.99% 99.43%
Minimum 35.58% 0.43%

Average (stateful operations) 40.57% 17.68%

Table 3: CPU usage of the Xenograft annotation running on
cloud functions compared to a production-matched Spark
cluster.

allocates a greater proportion of resources to massively parallel
stages. Thus, wasting resources in cloud functions comes at a much
bigger price than in virtual instances.

Figure 4 shows that an architecture based entirely on cloud func-
tions is more expensive than a cluster, despite being significantly
more performant. The cost of serverless executions doubles that of
clusters for typical annotation jobs, and it is up to nearly 4x more
expensive for demanding jobs. Overall, cloud functions meet the
needs of elasticity, but fail in stateful stages and can increase the
cost of the pipeline when strictly adhering to them.

2.54
5.86 8.15

0.91

14.68

43.04

Brain Xenograft X089
0

10

20

30

40

50

Ti
m
e	
(m

in
)

Cloud	functions Spark	cluster

Figure 3: Execution time of different METASPACE anno-
tation jobs, run on Lithops over cloud functions against a
production-matched Spark cluster.

To prove that cost can be mitigated by better management of
stateful operations, we study the case of sorting and partitioning
an input dataset. We process Xenograft using two different archi-
tectures. On the one hand, a distributed sort purely based on cloud
functions and object storage, as we do in the serverless deployment
of the pipeline. On the other hand, an in-place sort in a VM, sharing
data in local memory instead of object storage. We use a total of
64 GB of physical memory in both. For the serverless deployment,
we use 37 AWS Lambda functions, each with 1769 MB of memory.

0.16

1.66

7.09

0.04
0.69

2.03

Brain Xenograft X089

2

4

6

8

C
os
t	(
$)

Cloud	functions Spark	cluster

Figure 4: Cost, in dollars, of distinct METASPACE annota-
tion jobs, run on Lithops over cloud functions against a
production-matched Spark cluster.

325.87
416.62

Serverless VM
0

150

300

450

Ti
m

e	
(s

)

(a)

1.54

0.09

Serverless VM
0

0.5

1

1.5

C
os

t	(
$)

(b)

Figure 5: Distributed sort results for Xenograft on a cloud
function-based serverless implementation and on a single
VM. (a) Total execution time. (b) Total cost.

Since 1769 MB provides the equivalent of a single vCPU in AWS
Lambda, the serverless deployment employs a total of 37 vCPUs. In
the VM implementation, we use an m4.4xlarge AWS EC2 instance
with 16 vCPUs and 64 GB of RAM.

Figure 5 shows the execution time and cost results for both im-
plementations. Although the serverless implementation provides a
1.28 speedup over the VM implementation —which includes VM
initialisation time from a previously built AMI— the cost differ-
ences are significant: sorting and partitioning in the VM is 17 times
cheaper than using cloud functions. Provisioning the same amount
of memory and even doubling the number of vCPUs, the speedup
of serverless is opaqued by its cost implications.

Resource starvation is again a significant contributor to cost
inefficiency. Both implementations spend a large proportion of
their execution time on I/O, 48.89% in the serverless execution and
53.24% in the VM execution, during which CPU resources are idle.
However, the asymmetry in cost per vCPU makes the serverless
I/O much more expensive than the serverful. The time for reading,

19

MIDDLEWARE Industrial Track ’24, December 2–6, 2024, Hong Kong, Hong Kong G. T. Eizaguirre, D. Barcelona-Pons, A. Arjona, G. Vernik, T. Alexandrov, and P. García López

exchanging and writing data with cloud functions is charged at
$0.75, while with a VM it costs only $0.05.

Our analysis reinforces the idea of using VMs for stateful opera-
tions. One of the likely advantages of cloud functions over serverful
services could be their scalability, even to thousands of concur-
rent functions. With a few GBs of memory each, a pool of cloud
functions can handle hundreds of gigabytes of input. For example,
AWS Lambda can run tens of thousands of concurrent functions
with 10 GB of memory each.8 However, the range of virtual in-
stance specifications in cloud provider catalogues is also extensive.
AWS EC2, for example, offers instances with tens of terabytes of
memory,9 which exceeds even the aggregated memory of cloud
functions. We could virtually sort datasets of thousands of GBs
within serverful components, vertically scaling them to input size.

4.3 Convenient integration of serverless and
serverful components

We adhere to our serverful component integration bid and the
bilateral analysis of the sort operation to optimize the annotation
pipeline. Embarrassingly parallel stages, such as data processing,
benefit most from FaaS, while serverful services are better suited
to stateful stages with strong dependencies. Exploiting Lithops’s
unified programming framework, we develop a hybrid serverless
architecture selectively choosing the right service for each stage.
We use AWS Lambda for embarrassingly parallel stages in Figure 2,
while hosting stateful operations in properly scaled EC2 instances.

Accurately defining the memory requirements for each input
is a non-trivial challenge, as sorting is a memory-intensive opera-
tion that consumes up to 2-3 times the data size. Our architecture
measures input size and selects the host instance type based on em-
pirically defined bounds. Data is partitioned, processed as numpy
arrays and converted to pandas partitions that are written back
to object storage. Reads and writes are parallelized to optimise
communication and to overlap (de)serilization with I/O.

To evaluate the deployment that makes the most efficient use
of resources, we integrate latency and cost into a single metric,
cost-performance, defined as 1

𝑙𝑎𝑡𝑒𝑛𝑐𝑦×𝑐𝑜𝑠𝑡 . An architecture that
maximises cost-performance is considered to deliver better per-
formance relative to its cost. By running sorts and partitions in a
single VM, we improved cost-performance by 188.23% in Xenograft
and 148.10% in X089 compared to the serverless implementation.
Figure 6 shows that the hybrid implementation improves the cost
performance of the cloud functions-based implementation in all
jobs.

The end-to-end execution times of the studied deployments are
listed in Table 4. When running the annotation pipeline in a hybrid
architecture, we achieve a speedup of 3.64 in X089 and 2.21 in
Xenograft compared to Spark. Overall, by coherently alternating
cloud functions and VMs, we achieve up to 75% better performance
at a similar cost to a cluster implementation through a smarter use
of resources.

8https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
9https://aws.amazon.com/es/ec2/instance-types/u7i

Brain Xenograft X089
10-4

10-2

100

Co
st-
pe
rfo
rm
an
ce

1=
(s
$
$)

Cloud	functions
Hybrid
Spark	cluster

Figure 6: Cost-performance (in 1
𝑙𝑎𝑡𝑒𝑛𝑐𝑦×𝑐𝑜𝑠𝑡) of distinct

METASPACE annotation jobs in the three studied architec-
tures.

Job Cloud functions Hybrid Spark

Brain 152.20s 105.49s 54.83s
Xenograft 351.57s 398.70s 889.54s
X089 488.86s 709.14s 2582.66s

Table 4: Execution time of each annotation job executed in
the studied architectures.

The proposed hybrid architecture has been adopted by EMBL and
is the default deployment of the annotation pipeline in the METAS-
PACE dataspace.10 Lithops’s programming abstractions made it
easy to integrate VMs into the original serverless architecture.

5 Conclusion
Because of their scalability, cloud functions adapt to the needs of
parallel, multi-stage jobs and avoid under and overutilisation of re-
sources, resulting in cost and performance improvements. However,
their decoupled nature makes them suboptimal for stateful opera-
tions. In this paper, we present the idea of seamlessly integrating
VMs into stateful stages of serverless pipelines through appropri-
ate resource abstractions. We use Lithops, a serverless analytics
framework, and extend it with a VM management functionality.
To validate our proposal, we optimise the METASPACE metabolite
annotation pipeline, from a pure serverless implementation to a
hybrid serverless-serverful deployment. We showcase the benefits
of integrating serverful components into the serverless paradigm
keeping the execution of embarrassingly parallel stages in cloud
functions while running I/O-intensive stages in VMs. By using vir-
tual instances in the Cloud, we were able to significantly reduce
the execution time of the pipeline while keeping its overall cost
unchanged.

Acknowledgments
This work has been partly funded by the EUHorizon programme un-
der the grant agreements: 101092644 (NearData), 101092646 (Cloud-
Skin), and 101093110 (EXTRACT). Germán T. Eizaguirre is recipient
of a pre-doctoral FPU grant from the Spanish Ministry of Universi-
ties (ref. FPU21/00630). Special thanks to Pau Balanzà-Malagelada
and Jordi Canosa-Casellas for their support in the experimentation
phase.

10https://github.com/metaspace2020/metaspace/tree/master/metaspace/engine

20

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://aws.amazon.com/es/ec2/instance-types/u7i
https://github.com/metaspace2020/metaspace/tree/master/metaspace/engine

Serverful Functions: Leveraging Servers in Complex Serverless Workflows (industry track) MIDDLEWARE Industrial Track ’24, December 2–6, 2024, Hong Kong, Hong Kong

References
[1] Amazon. 2024. AWS EMR. https://aws.amazon.com/emr
[2] Amazon. 2024. AWS EMR Serverless. https://aws.amazon.com/emr/serverless/
[3] Amazon. 2024. AWS Lambda. https://aws.amazon.com/lambda/
[4] Aitor Arjona, Gerard Finol, and Pedro García López. 2023. Transparent serverless

execution of Python multiprocessing applications. Future Generation Computer
Systems 140 (2023), 436–449. https://doi.org/10.1016/j.future.2022.10.038

[5] Aitor Arjona, Arnau Gabriel-Atienza, Sara Lanuza-Orna, Xavier Roca-Canals,
Ayman Bourramouss, Tyler K. Chafin, Lucio Marcello, Paolo Ribeca, and Pedro
García-López. 2023. Scaling a Variant Calling Genomics Pipeline with FaaS. In
Proceedings of the 9th International Workshop on Serverless Computing (WoSC
’23). Association for Computing Machinery, New York, NY, USA, 59–64. https:
//doi.org/10.1145/3631295.3631403

[6] Daniel Barcelona-Pons, Pierre Sutra, Marc Sánchez-Artigas, Gerard París, and
Pedro García-López. 2022. Stateful Serverless Computing with Crucial. ACM
Trans. Softw. Eng. Methodol. 31, 3, Article 39 (2022), 38 pages. https://doi.org/10.
1145/3490386

[7] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue
Cheng. 2020. Wukong: a scalable and locality-enhanced framework for serverless
parallel computing. In Proceedings of the 11th ACM Symposium on Cloud Comput-
ing (Virtual Event, USA) (SoCC ’20). Association for Computing Machinery, New
York, NY, USA, 1–15. https://doi.org/10.1145/3419111.3421286

[8] Coiled. 2024. Coiled. https://www.coiled.io/
[9] Cubed. 2024. Cubed: Bounded-memory serverless array processing in xarray.

https://xarray.dev/blog/cubed-xarray
[10] Dask Development Team 2016. Dask: Library for dynamic task scheduling. Dask

Development Team. http://dask.pydata.org
[11] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio

Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible com-
putational workflows. Nature biotechnology 35, 4 (2017), 316–319. https:
//doi.org/10.1038/nbt.3820

[12] Gerard Finol, Gerard París, Pedro García-López, and Marc Sánchez-Artigas. 2024.
Exploiting inherent elasticity of serverless in algorithms with unbalanced and
irregular workloads. J. Parallel Distrib. Comput. 190, C (2024), 15 pages. https:
//doi.org/10.1016/j.jpdc.2024.104891

[13] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From laptop to lambda:
outsourcing everyday jobs to thousands of transient functional containers. In
Proceedings of the 2019 USENIX Annual Technical Conference (Renton, WA, USA)
(USENIX ATC ’19). USENIX Association, USA, 475–488.

[14] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasub-
ramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter,
and Keith Winstein. 2017. Encoding, fast and slow: low-latency video processing
using thousands of tiny threads. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation (Boston, MA, USA) (NSDI’17).
USENIX Association, USA, 363–376.

[15] Pedro García-López, Marc Sánchez-Artigas, Simon Shillaker, Peter Pietzuch,
David Breitgand, Gil Vernik, Pierre Sutra, Tristan Tarrant, and Ana Juan Fer-
rer. 2019. ServerMix: Tradeoffs and Challenges of Serverless Data Analytics.
arXiv:1907.11465

[16] Google. 2024. GCP BigQuery. https://cloud.google.com/bigquery?
[17] Google. 2024. GCP Dataproc. https://cloud.google.com/dataproc
[18] Google. 2024. GCP Dataproc Serverless. https://cloud.google.com/dataproc-

serverless/docs
[19] Piotr Grzesik, Dariusz R Augustyn, Łukasz Wyciślik, and Dariusz Mrozek. 2021.

Serverless computing in omics data analysis and integration. Briefings in Bioin-
formatics 23, 1 (09 2021). https://doi.org/10.1093/bib/bbab349

[20] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007 (Lisbon, Portugal) (EuroSys ’07). Association for Computing Ma-
chinery, New York, NY, USA, 59–72. https://doi.org/10.1145/1272996.1273005

[21] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: distributed computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, CA, USA) (SoCC ’17).
Association for Computing Machinery, New York, NY, USA, 445–451. https:
//doi.org/10.1145/3127479.3128601

[22] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion Stoica.
2022. Jiffy: elastic far-memory for stateful serverless analytics. In Proceedings
of the Seventeenth European Conference on Computer Systems (Rennes, France)
(EuroSys ’22). Association for ComputingMachinery, NewYork, NY, USA, 697–713.
https://doi.org/10.1145/3492321.3527539

[23] Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski, and Lionel
Villard. 2020. Triggerflow: trigger-based orchestration of serverless workflows.
In Proceedings of the 14th ACM International Conference on Distributed and Event-
Based Systems (Montreal, QC, Canada) (DEBS ’20). Association for Computing
Machinery, New York, NY, USA, 3–14. https://doi.org/10.1145/3401025.3401731

[24] Ashraf Mahgoub, Karthick Shankar, SubrataMitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware Data Passing for Chained
Serverless Applications. In 2021 USENIX Annual Technical Conference (Virtual
Event, USA) (USENIX ATC ’21). USENIX Association, USA, 285–301.

[25] Modal. 2024. Modal. https://modal.com
[26] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive

Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data
(Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 115–130. https://doi.org/10.1145/3318464.3389758

[27] Andrew Palmer, Prasad Phapale, Ilya Chernyavsky, Regis Lavigne, Dominik Fay,
Artem Tarasov, Vitaly Kovalev, Jens Fuchser, Sergey Nikolenko, Charles Pineau,
et al. 2017. FDR-controlled metabolite annotation for high-resolution imaging
mass spectrometry. Nature methods 14, 1 (2017), 57–60.

[28] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, fast and slow:
scalable analytics on serverless infrastructure. In Proceedings of the 16th USENIX
Conference on Networked Systems Design and Implementation (Boston, MA, USA)
(NSDI’19). USENIX Association, USA, 193–206.

[29] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ramakrish-
nan. 2022. SPRIGHT: extracting the server from serverless computing! high-
performance eBPF-based event-driven, shared-memory processing. In Proceed-
ings of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SIG-
COMM ’22). Association for Computing Machinery, New York, NY, USA, 780–794.
https://doi.org/10.1145/3544216.3544259

[30] Rredis. 2024. Redis. https://redis.io
[31] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-López. 2018.

Serverless Data Analytics in the IBMCloud. In Proceedings of the 19th International
Middleware Conference Industry (Rennes, France) (Middleware ’18). Association
for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/
3284028.3284029

[32] Marc Sánchez-Artigas and Germán T. Eizaguirre. 2022. A seer knows best:
optimized object storage shuffling for serverless analytics. In Proceedings of
the 23rd ACM/IFIP International Middleware Conference (Quebec, QC, Canada)
(Middleware ’22). Association for Computing Machinery, New York, NY, USA,
148–160. https://doi.org/10.1145/3528535.3565241

[33] Marc Sánchez-Artigas, Germán T. Eizaguirre, Gil Vernik, Lachlan Stuart, and
Pedro García-López. 2020. Primula: a Practical Shuffle/Sort Operator for Server-
less Computing. In Proceedings of the 21st International Middleware Conference
Industrial Track (Delft, Netherlands) (Middleware ’20). Association for Computing
Machinery, New York, NY, USA, 31–37. https://doi.org/10.1145/3429357.3430522

[34] Marc Sánchez-Artigas and Pablo Gimeno Sarroca. 2021. Experience Paper: To-
wards enhancing cost efficiency in serverless machine learning training. In
Proceedings of the 22nd International Middleware Conference (Middleware ’21).
Association for Computing Machinery, New York, NY, USA, 210–222. https:
//doi.org/10.1145/3464298.3494884

[35] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
stateful functions-as-a-service. Proc. VLDB Endow. 13, 12 (2020), 2438–2452.
https://doi.org/10.14778/3407790.3407836

[36] Bishoy Wadie, Lachlan Stuart, Christopher M. Rath, Bernhard Drotleff, Sergii
Mamedov, and Theodore Alexandrov. 2024. METASPACE-ML: Metabolite anno-
tation for imaging mass spectrometry using machine learning. bioRxiv (2024).
https://doi.org/10.1101/2023.05.29.542736

21

https://aws.amazon.com/emr
https://aws.amazon.com/emr/serverless/
https://aws.amazon.com/lambda/
https://doi.org/10.1016/j.future.2022.10.038
https://doi.org/10.1145/3631295.3631403
https://doi.org/10.1145/3631295.3631403
https://doi.org/10.1145/3490386
https://doi.org/10.1145/3490386
https://doi.org/10.1145/3419111.3421286
https://www.coiled.io/
https://xarray.dev/blog/cubed-xarray
http://dask.pydata.org
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1016/j.jpdc.2024.104891
https://doi.org/10.1016/j.jpdc.2024.104891
https://arxiv.org/abs/1907.11465
https://cloud.google.com/bigquery?
https://cloud.google.com/dataproc
https://cloud.google.com/dataproc-serverless/docs
https://cloud.google.com/dataproc-serverless/docs
https://doi.org/10.1093/bib/bbab349
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3492321.3527539
https://doi.org/10.1145/3401025.3401731
https://modal.com
https://doi.org/10.1145/3318464.3389758
https://doi.org/10.1145/3544216.3544259
https://redis.io
https://doi.org/10.1145/3284028.3284029
https://doi.org/10.1145/3284028.3284029
https://doi.org/10.1145/3528535.3565241
https://doi.org/10.1145/3429357.3430522
https://doi.org/10.1145/3464298.3494884
https://doi.org/10.1145/3464298.3494884
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.1101/2023.05.29.542736

	Abstract
	1 Introduction
	2 Serverful backends for serverless analytics
	2.1 Integration of serverful backends
	2.2 Lithops' seamless programming framework

	3 Related work
	4 Use case validation
	4.1 Serverless data analytics in a metabolomics data space
	4.2 The serverless sort hindrance
	4.3 Convenient integration of serverless and serverful components

	5 Conclusion
	Acknowledgments
	References

