Check for
Updates

Flexecutor: Out-of-the-Box Smart Provisioning for Serverless
Workflows

Enrique Molina-Giménez
enrique.molina@urv.cat
Universitat Rovira i Virgili
Tarragona, Spain

Octavio H. Iacoponelli
octaviohoracio.iacoponelli@urv.cat
Universitat Rovira i Virgili
Tarragona, Spain

Abstract

Serverless computing enables applications to scale dynamically
without manual server management, with users paying only for the
actual compute resources consumed. In the context of parallel work-
load execution, the problem of determining how many resources to
provision and of what size has been extensively studied in recent
years. However, existing approaches often present usability chal-
lenges, such as ad-hoc implementations or tight integration with
a single cloud provider, which hinder the efficient deployment of
new applications. In this work, we introduce Flexecutor, a Python
library built on top of Lithops that unifies state-of-the-art serverless
provisioners into a reusable and easy-to-use framework. Flexecutor
abstracts away the underlying complexity, providing practitioners
with a simple interface to deploy, manage, and optimize serverless
workflows across multiple FaaS platforms. With Flexecutor, the
deployment effort for coding serverless workflows is significantly
reduced, while enabling the seamless integration of new smart
provisioning strategies.

CCS Concepts

« Computer systems organization — Cloud computing.

Keywords

Serverless computing, Function-as-a-Service (FaaS), Serverless work-
flows, Resource provisioning, Parallel workloads, Scalability, Smart
provisioning

ACM Reference Format:

Enrique Molina-Giménez, Daniel Barcelona-Pons, Octavio H. Iacoponelli,
and Pedro Garcia-Lopez. 2025. Flexecutor: Out-of-the-Box Smart Provision-
ing for Serverless Workflows. In 11th International Workshop on Serverless
Computing (WoSC11 ’25), December 15-19, 2025, Nashville, TN, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3774899.3775013

This work is licensed under a Creative Commons Attribution 4.0 International License.
WoSC11 °25, Nashville, TN, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2302-5/25/12

https://doi.org/10.1145/3774899.3775013

14

Daniel Barcelona-Pons
daniel.barcelona@urv.cat
Universitat Rovira i Virgili
Tarragona, Spain

Pedro Garcia-Lopez
pedro.garcia@urv.cat
Universitat Rovira i Virgili
Tarragona, Spain

1 Introduction

Serverless computing, and more specifically the Function-as-a-
Service (FaaS) model, delivered to practitioners a new computa-
tional paradigm in which they could abstract away server man-
agement, delegating to the cloud provider the provisioning and
operation of servers, used only for the time actually needed. The
advantages of Faa$S over traditional computing are several: (1) no
infrastructure management, (2) instantaneous provisioning and
very high elasticity [9], and (3) a pay-as-you-go model, where costs
are incurred only for the actual compute time consumed.

FaasS services offered by cloud providers have been mostly adopted
for web application deployment and event-based computations [23],
typically in the form of short-lived activations. However, numer-
ous efforts in the scientific literature (see Section 2), as well as
some commercial solutions, leverage the computational power —
and the very high scalability provided by FaaS— as a workhorse
for the distributed execution of parallelizable workloads. In this
work, we establish the term serverless workflows to refer to such
tasks: parallel computations that exploit the elasticity of FaaS to
launch massive-scale executions. The framework of reference for
executing serverless workflows is Lithops [21], a Python-based
parallel computing framework that offers a unified API to launch
workloads in parallel across different FaaS providers: AWS Lambda,
Azure Functions, GCP Functions and more.

Although the use of serverless computing for launching par-
allel workloads is highly attractive (scaling from zero resources
to large-scale in very short times, and paying only for compute
time) compared to the serverful approach [10], this does not imply
that the serverless model is, by itself, close to optimal. Resource
provisioning for the execution of serverless workflows has been ex-
tensively studied by the scientific community [1, 8,13, 16, 19, 25-27].
While addressed in different ways, the common challenge remains:
determining (1) the required number of functions and (2) the opti-
mal function resource configuration according to the practitioner’s
objectives, which may involve minimizing cost, execution time, or
a trade-off between both. To the best of our knowledge, all existing
provisioning solutions for serverless workflows face accessibility
and usability challenges: some are not open-source [1, 13, 13, 24, 25],
which prevents direct usage, while others, although publicly ac-
cessible, are ad-hoc implementations that (1) integrate with only a
single FaaS provider [8, 16, 26] and/or (2) are not released as reusable
libraries for the implementation of new serverless workflows [16].

https://orcid.org/0009-0005-2597-3815
https://orcid.org/0000-0002-6051-9424
https://orcid.org/0009-0004-7825-8826
https://orcid.org/0000-0002-9848-1492
https://doi.org/10.1145/3774899.3775013
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774899.3775013
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3774899.3775013&domain=pdf&date_stamp=2025-12-14

WoSC11 °25, December 15-19, 2025, Nashville, TN, USA

Flexecutor is the Python library we propose to overcome these
limitations in a unified manner. Our solution builds upon Lithops to
extend this popular framework with all the necessary directives to
simplify workflow management [2, 12, 18] and support the end-to-
end optimization of resource provisioning for serverless workflows,
fully transparent to the underlying implementation. The Flexecutor
API exposes all the required operations to cover the complete life-
cycle of the provisioning problem. The library, abstract by design,
currently integrates four state-of-the-art serverless smart provision-
ing solutions (Caerus [25], Ditto [13], Orion [16], and Jolteon [26]),
while leaving the door open to seamless integration of future ap-
proaches.

The main contribution of this work is to provide practitioners
with the necessary tool to optimize their serverless workflows.
While until now the development and implementation of serverless
workflows has been a complex, time-consuming, and error-prone
process, our out-of-the-box library minimizes the efforts required
to deploy, configure, and manage these workflows, providing a
unified and reusable interface for state-of-the-art serverless smart
provisioning solutions.

The structure of this paper is as follows. In Section 2, we review
the background behind the solution. Section 3 focus on the usabil-
ity frictions noticed in the field. Section 4 presents Flexecutor, the
unified library that facilitates the usage of serverless smart provi-
sioners. Section 5 introduces a set of test applications integrated into
the library. Section 6 evaluates the performance of the integrated
serverless smart provisioners, and finally, Section 7 concludes the

paper.

2 Background

While most serverless usage targets short-lived, independent ac-
tivations (HTTP requests, event-driven operations) [23], the use
of multiple concurrent serverless functions as a computation en-
gine for parallel workloads is relevant and has been thoroughly
studied. Serverless workloads (hereafter referred to as serverless
workflows for convenience) are Directed Acyclic Graphs (DAGs),
where each node represents a computational stage composed of a
set of concurrent serverless functions, typically operating over a
dataset. Communication between stages can occur through different
possible backends [4, 5, 15, 22], with object storage being the most
common. Lithops [21] is a Python library that, in a cloud-agnostic
manner, allows executing serverless workflows on the desired cloud
provider with minimal configuration and coding overhead.
However, using Lithops to deploy serverless workflows does
not end the practitioner’s concerns. Once a serverless workflow
is programmed, there are still variables to optimize (see Figure 1):
how many functions should be provisioned for a computational
stage (horizontal scaling), and what size should each function be
(vertical scaling)? The answers to these questions are not unique
and depend on the user’s objective: do I want my workflow to execute
as fast as possible? Do I want to spend the least amount of money?
Or do I prefer a trade-off between both? In short, depending on the
user’s goal, there exists a serverless resource optimization problem
that has been extensively addressed in the scientific literature [1,
8, 13, 16, 19, 24-26]. Commonly, smart provisioners identify the
Pareto-optimal curve in the execution time vs. cost plane. A brief

15

E. Molina-Giménez et al.

technical overview of a subset of smart provisioners is presented
in Table 1.

Price?

Targets —» | Time?
Performance?

Data / workload

Y Y

L]| I : :)

- |

Function

allocation "
(vCPU/RAM)

@ y
~
Number of instances @

Figure 1: Visualising the serverless provisioning challenge.

Impl. Description

Caerus Based on the NIMBLE algorithm, it schedules tasks in server-
less DAGs at the right moment to minimize cost and com-
pletion time. It models fine-grained dependencies between
pipelineable and non-pipelineable steps.

By decoupling parallelism configuration from function place-
ment, the system introduces a new scheduling granular-
ity—"“stage groups”—to optimize job completion time and cost.
Represents function latency as distributions rather than single

Ditto

Orion
values and combines them with convolution (series) and maxi-
mum (parallel). It considers correlations between functions to
accurately estimate end-to-end latency in serverless DAGs.

Jolteon Combines white-box and black-box modeling into a stochastic

model for serverless workflows, converting the uncertain opti-

mization problem into a deterministic one using Monte Carlo
sampling. It finds optimal resource configurations via gradient
descent thanks to convexity.

Table 1: Summary of some smart provisioners for serverless
workflows.

However, the scope of this work is not to delve into the technical
implementation of serverless smart provisioning. The main focus is,
after identifying common abstract operations inherent to smart pro-
visioning (see Section 3), to provide a single, easily usable solution
for practitioners seeking to optimize their serverless workflows.

3 Dissecting the usability problem

Uncovered gaps in smart provisioning. Existing serverless
smart provisioning frameworks present significant usability chal-
lenges, as summarized in Table 2. Most of these tools are research
prototypes: they are described and evaluated in papers, but no
publicly-accessible code is provided [1, 13, 19, 24, 25]. This makes

Flexecutor: Out-of-the-Box Smart Provisioning for Serverless Workflows

Open Cloud DAG o0&t
source agnostic mgmt. provisioning
API

Caerus [25] X+ - - -
Ditto [13] X+ - - -
Locus [19] X -
Cose [1] X - - -
Stepconf [24] X - - -
Aquatope [27] v X v v
Orion [16] v X X X
Jolteon [26] v X v Partially
PowerTuning [8] X X X v
Flexecutor v v v v

*Re-implemented by Zhang et al. [26]

Table 2: Usability and feature coverage of state-of-the-art
smart provisioning solutions.

it impossible to reuse the existing solutions directly, leaving re-
implementation as the only option—a process that is often infeasible
due to technical and temporal complexity.

Even when source code is available, additional limitations per-
sist. Many tools are tightly coupled to a specific cloud provider [8,
16, 26, 27]; others do not allow native DAG declaration and or-
chestration [8, 16]; and some offer ad-hoc APIs that do not expose
operations aligned with standard smart provisioning practices [16].

These combined limitations motivated the development of Flex-
ecutor, which aims to eliminate the usability barriers present in
current open-source smart provisioning solutions.

Smart provisioning operations must be abstracted. Across
the surveyed tools, a common high-level pattern emerges: the op-
erations available to users are largely shared across different im-
plementations. In other words, despite the underlying technical
differences, the systems are composed of the same fundamental op-
erations. Flexecutor abstracts these operations into a single unified
interface, which includes:

o Profile: Executes the serverless workflow under different
user-defined resource configurations and collects execution
metrics.

o Train: Uses the recorded metrics to build a predictive model
(via an implementation-specific learning algorithm) that esti-
mates execution time and cost for a given resource allocation.

e Predict: Infers execution metrics from the model for any
specified resource configuration.

o Optimize: Searches for the optimal configuration according
to the user-selected objective, determining the best resource
allocation for all stages of the DAG.

o Execute: Runs the DAG under the chosen configuration. This
operation can be triggered automatically by the system (after
Profile or Optimize) or explicitly by the user.

In summary, prior to this work, available serverless smart provi-
sioning solutions were fragmented in structure and lacking usabil-
ity, creating high barriers for practical adoption. Flexecutor con-
solidates these diverse solutions into a single, unified framework,

16

WoSC11 25, December 15-19, 2025, Nashville, TN, USA

addressing the usability gap and providing a consistent, high-level
interface for all core smart provisioning operations.

4 Flexecutor: the out-of-the-box solution

As discussed in previous sections, Flexecutor emerges as a response
to the usability frictions identified in existing smart provisioners.
The solution is implemented as a Python library of approximately
5.5k SLoC, providing essentially a client-side orchestration system
for serverless DAGs, native integration with the Lithops compute
engine, comprehensive support for smart provisioning, and an ex-
tensible design aimed at incorporating new provisioners. To struc-
ture the tool description, this section presents it from a structural
perspective, the following section from a functional perspective,
and finally we conclude with an example illustrating how to pro-
gram serverless workflows over Flexecutor.

4.1 Scaffolding the DAG

The architecture of Flexecutor is based on several Python classes
that encapsulate the data structures required for orchestrating and
smart provisioning serverless workflows. Figure 2 depicts the key
entities of the system. The central piece is the DAG entity, which
constitutes a Directed Acyclic Graph organizing the different stages
that compose a workflow. Each Stage is defined by the function
code to be executed, called fn_code, and by two collections that
group its inputs and outputs. These collections are represented
through the FlexData entity, which acts as a logical abstraction
over objects stored in object storage and their distribution policy
(one-to-one, scatter, broadcast, on-the-fly partitioning [3], etc.).

Data access, which in serverless workflows involves constant
exchanges of objects between storage and FaaS functions, is thus
automated and hidden from the user. To achieve this, each stage has
an execution context (StageContext), through which the fn_code
retrieves input paths and defines output paths. The user only needs
to implement a function that accepts one parameter which type
is StageContext and, via using operations get_input_paths and
next_output_path, can read from and write to the storage system.
Once this fn_code is defined, it is associated with the corresponding
stage, and the stage becomes part of the DAG.

The full DAG is constructed incrementally. After instantiating the
initial graph, the various stages are added, and finally, the depen-
dencies that determine execution order are declared. Flexecutor
adopts a syntax inspired by Apache Airflow [6], which facilitates
understanding and reduces the learning curve for users familiar
with workflow orchestration systems. In this way, the user declara-
tively defines the graph and associated functions, while Flexecutor
automatically manages both data transfers and workflow execution
on Lithops.

4.2 Enabling Smart Provisioning

Once the DAG has been built, the next step is to provide the op-
erations required for serverless smart provisioning. In Section 3,
we reviewed the common actions performed by existing smart
provisioners—namely profile, train, predict, optimize, and
execute. The DAGExecutor class exposes these five methods di-
rectly to the programmer, providing a one-to-one correspondence.

WoSC11 °25, December 15-19, 2025, Nashville, TN, USA

Function
code

FlexData FlexData

. Declarative entity

DAGExecutor

E. Molina-Giménez et al.

Figure 2: High-level diagram representing class structure in Flexecutor.

Figure 3 helps illustrate the different smart provisioning directives
and their lifecycle during the provisioning process.

NYY;
1

1
lerHoPsI

'aws 1

A
a)

PROFILE

metrics

LEARN/TRAIN

inference

A~

(]

PREDICT OPTIMIZE -E

o

specified S_
confi optimized

&

EXECUTE P A—

Figure 3: Flexecutor operative lifeycle.

Some of these methods, such as profile and execute, are com-
mon to all provisioners, as they merely execute the serverless work-
flow on the target service (and collect metrics). To enable this func-
tionality, DAGExecutor internally wraps Lithops, mapping each
stage of the workflow to a Lithops map() operation while orches-
trating the DAG.

Other operations, namely train, predict, and optimize, are
specific to the selected smart provisioner (Scheduler). The user
must indicate which Scheduler to associate with DAGExecutor
(choosing among four options: Caerus, Ditto, Orion, or Jolteon)
and provide the Scheduler hyperparameters, such as optimization
targets (minimum cost, maximum performance) and any scheduler-
specific parameters.

Once configured, these operations are executed transparently to
the user. This seamless behavior is made possible by the abstract
Scheduler structure, which not only ensures consistent execution
across different provisioners but also allows future integrations
with new smart provisioners without requiring changes to the core
system.

17

if __name__ == "__main__":
Parallel function definition
def word_count(ctx: StageContext):
txt_paths = ctx.get_input_paths("input")
for input in inputs:
with open(input, "r") as f:
content = f.read()
count = len(content.split())
count_path = ctx.next_output_path("output™)
with open(count_path, "w") as f:
f.write(str(count))

@flexorchestrator ()
def main():
dag = DAG("hellodag")
Configure the DAG stages
stagel = Stage(
"map",
func=word_count,
inputs=FlexData(prefix="input"),
outputs=FlexData(prefix="output"),

)

stage2 = Stage(...)

DAG dependency definition
stagel >> stage2

dag.add_stages ([stagel, stage2])

Instance executor and perform operations
executor = DAGExecutor(dag, Jolteon(...))
executor.profile([ConfigSpace(...), ...1)
executor.train()

executor.optimize ()

executor.shutdown ()

main ()

Listing 1: Example DAG: counting words.

4.3 Example: Word Counter App

To illustrate the use of Flexecutor, we present a simple serverless
workflow that counts the number of words in a set of text files
(Listing 1). The workflow is organized as a DAG with multiple Stage
(map-reduce word counter), although for brevity we only reference
the first stage.

The first stage processes input . txt files and produces output
files containing the word counts, transparently using the FlexData
abstraction. word_count is the function that iterates over the input
files, reads their content, calculates the number of words, and writes
the result to the corresponding output path using get_input_paths
and next_output_path methods of StageContext. Once declared,
the Stage is added to the DAG.

Flexecutor: Out-of-the-Box Smart Provisioning for Serverless Workflows

Once the DAG is fully defined, an instance of DAGExecutor takes
care of its execution. It receives the instance of the Scheduler
specified by the user (Jolteon in this case). With this setup, the
smart provisioning operations (profile, train, optimize, etc.) are
ready to be executed.

This example demonstrates the key features of Flexecutor: declar-
ative DAG construction, automatic data handling, seamless inte-
gration with Lithops, and transparent orchestration of smart pro-
visioner operations. Although simple, it is representative of the
framework’s ability to structure and optimize the execution of
serverless workflows.

5 Example workloads

Flexecutor library is not only delivered as a solution to the usability
issues discussed in this work, but it also comes with a set of example
applications provided for learning, development, and testing pur-
poses. Below, we give a brief overview of the mission and structure
of each example serverless workflow:

Titanic app: its particularity is that it is a monostage app. An arbi-
trary number of parallel functions train a random forest classifier
on the popular Titanic dataset [14]. The goal of this training is to
predict the survival of the ship’s passengers.

Video app: based on Pocket [15], it is responsible for splitting
videos, extracting frames, preprocessing them, and classifying them
in four different stages. As a particular feature, some frames are
preprocessed before being analyzed by the YOLO [20] model, while
others are sent directly to classification. Each run processes one-
minute videos in the Music and News categories, covering a mix of
content for evaluation.

Machine learning app: This ML workflow, inspired by Cirrus [7],
operates through four consecutive stages: reducing dimensionality
with PCA, training models, merging them, and testing. The training
phase leverages the LightGBM library to run several parallel pro-
cesses that generate multiple decision trees, which are later merged
into a single random forest.

Radio interferometry app: This large-scale serverless workflow
use case, developed within the EXTRACT EU project [11], han-
dles large volumes of radio astronomy data from NenuFar tele-
scopes. Featured as a showcase in Flexecutor, it executes rebinning
of Measurement Set (MS) files [17], precise signal calibration, and
sophisticated subtraction to eliminate noise and interference. Once
calibrated, the pipeline produces high-fidelity images of the ob-
served sky regions.

6 Evaluation

Smart provisioners integration. Flexecutor integrates four smart
provisioners—Caerus, Ditto, Orion, and Jolteon—into a unified
framework. While a direct comparison of code complexity before
(without Flexecutor) versus after (with Flexecutor) may seem tempt-
ing, it is important to keep in mind that the original baselines were
released as research prototypes. They provide the heuristics needed
for provisioning optimization according to each method, but were
never intended as ready-to-use tools.

Flexecutor takes care of the underlying framework code, saving
users from implementing hundreds of lines of low-level logic. At

18

WoSC11 25, December 15-19, 2025, Nashville, TN, USA

HIF o
HT H

40% 50%

Flexecutor -

Vanilla Lithops -

30% 60%
Figure 4: Orchestation time (%) respecting total execution
time in video app.

repository checkout 34f755d, the difference is clear: Caerus is 261
SLoC, Ditto 476 SLoC, Orion 508 SLoC, and Jolteon 855 SLoC. This
abstraction drastically lowers the implementation effort while still
giving access to state-of-the-art provisioning strategies.

We also tested Flexecutor with video processing and machine
learning workloads (see Section 5). Using the same setup described
for Jolteon in Section 6.1 of Zhang et al. [26], we reproduced the
results shown in Figures 9b and 9c of the same work with no mean-
ingful differences, showing that Flexecutor preserves the perfor-
mance of the original smart provisioners while making them much
easier to use.

DAG orchestration and data management systems. Flexecu-
tor builds on top of Lithops to provide a system that enables both
(1) seamless DAG declaration, in the style of Apache Airflow [6],
and (2) explicit data dependency management, with FlexData in-
puts and outputs defined at each stage of the serverless workflow.
Vanilla Lithops offers none of these abstractions, leaving users to
implement them manually. To quantify the impact of Flexecutor,
we evaluate both the simplification it provides and any runtime
overhead introduced in DAG orchestration.

Application Lithops SLoC Flexecutor SLoC SLoC savings (%)
ML app 322 278 13.66%
Titanic app 80 63 21.25%
Video app 247 180 27.13%

Table 3: SLoC savings and runtime overhead (Flexecutor vs
vanilla Lithops) for different applications.

In Table 3, we show the reduction in SLoC achieved with Flex-
ecutor, with savings ranging from 13.66% to 27.13% across the appli-
cations presented. Regarding the evaluation of DAG orchestration
performance, Figure 4 compares vanilla Lithops (without DAG
awareness) with Flexecutor, based on 10 runs of the video applica-
tion for each approach. On the X-axis, we show the orchestration
time (i.e., the total execution time minus the periods in which the
client is blocked by Faa$S invocations). We observe that introducing
the DAG orchestration system does not impose any overhead on
application performance.

7 Conclusions

Throughout this work, we have shown that resource provisioning
for serverless workflows has been a long-standing challenge, ad-
dressed by a wide range of heuristics and optimization strategies
in the literature. While these approaches offer valuable techniques
for fine-tuning resource allocation, they often remain narrowly

WoSC11 °25, December 15-19, 2025, Nashville, TN, USA

focused on the complexity of the provisioning problem itself. Cru-
cially, they tend to overlook the need for a fully-fledged solution
that embraces the entire lifecycle of serverless workflows — from
coding and orchestration to execution and optimization.

With Flexecutor, we address these limitations by introducing an
open-source, cloud-agnostic framework that brings together all the
core operations required to work with serverless workflows. Flex-
ecutor not only abstracts away smart provisioning but also provides
end-to-end orchestration capabilities, empowering developers and
researchers alike to experiment, deploy, and scale workflows with
minimal friction.

Code is publicly available at https://github.com/CLOUDLAB-
URV/flexecutor. We actively encourage the community to both use
the tool and extend it with new features. Thanks to its modular
and extensible design, Flexecutor paves the way towards future
integrations with additional function schedulers and advanced pro-
visioning strategies, always with the ultimate goal of lowering the
barriers to working effectively with serverless workflows.

In this sense, Flexecutor represents not just another optimization
method, but a comprehensive, extensible, and practical step forward
— bridging the gap between theoretical approaches and real-world
deployments.

Acknowledgments

We are grateful to the WoSC11 reviewers for their careful reading
and valuable suggestions. This work has been partially funded by
the European Union through Horizon Europe NEARDATA (101092644),
CLOUDSTARS (101086248), EXTRACT (101093110) projects and by the
Spanish Ministry of Economic Affairs and Digital Transformation
and the European Union-NextGenerationEU (frameworks PRTR
and the MRR), through the CroupLess Unico I+D CrLoup 2022
project.

References

[1] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020. COSE:
Configuring Serverless Functions using Statistical Learning. In IEEE INFOCOM
2020 - IEEE Conference on Computer Communications. 129-138. doi:10.1109/
INFOCOM41043.2020.9155363

Amazon Web Services. 2025. AWS Step Functions. https://docs.aws.amazon.com/
step-functions/. Accessed: 2025-07-29.

Aitor Arjona, Pedro Garcia-Lopez, and Daniel Barcelona-Pons. 2024. Dataplug:
Unlocking extreme data analytics with on-the-fly dynamic partitioning of un-
structured data. In 2024 IEEE 24th International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). 567-576. doi:10.1109/CCGrid59990.2024.00069
Daniel Barcelona-Pons, Aitor Arjona, Pedro Garcia-Lopez, Enrique Molina-
Giménez, and Stepan Klymonchuk. 2024. FaaS Is Not Enough: Serverless Handling
of Burst-Parallel Jobs. arXiv:2407.14331 [cs.DC] https://arxiv.org/abs/2407.14331
Daniel Barcelona-Pons, Pierre Sutra, Marc Sanchez-Artigas, Gerard Paris, and
Pedro Garcia-Lopez. 2022. Stateful Serverless Computing with Crucial. ACM
Trans. Softw. Eng. Methodol. 31, 3, Article 39 (March 2022), 38 pages. doi:10.1145/
3490386

Maxime Beauchemin et al. 2015. Apache Airflow: A platform to programmatically
author, schedule, and monitor workflows. https://airflow.apache.org.

[7] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. 2019. Cirrus: a Serverless Framework for End-to-end ML Workflows. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA)
(SoCC ’19). Association for Computing Machinery, New York, NY, USA, 13-24.
doi:10.1145/3357223.3362711

Alex Casalboni. 2024. aws-lambda-power-tuning. https://github.com/
alexcasalboni/aws-lambda-power-tuning. Accessed: 2025-07-29.

Gerard Finol, Gerard Paris, Pedro Garcia Lopez, and Marc Sanchez Artigas. 2024.
Exploiting inherent elasticity of serverless in algorithms with unbalanced and
irregular workloads. J. Parallel Distributed Comput. 190 (2024), 104891. doi:10.
1016/J.JPDC.2024.104891

6]

8

=

19

E. Molina-Giménez et al.

[10] Pedro Garcia-Lopez, Marc Sanchez-Artigas, Simon Shillaker, Peter Pietzuch,
David Breitgand, Gil Vernik, Pierre Sutra, Tristan Tarrant, Ana Juan-Ferrer, and
Gerard Paris. 2022. Trade-Offs and Challenges of Serverless Data Analytics. Springer
International Publishing, Cham, 41-61. doi:10.1007/978-3-030-78307-5_3
Janine Gehrig. 2023. Horizon Europe project EXTRACT kicks off with a holistic
approach to extreme data across the compute continuum. doi:10.5281/zenodo.
8101639 Press release announcing the launch of the EU-funded EXTRACT project.
Google Cloud. 2025. Google Cloud Workflows. https://cloud.google.com/
workflows. Accessed: 2025-07-29.

Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou, Gang Huang, Xuanzhe Liu,
and Xin Jin. 2023. Ditto: Efficient Serverless Analytics with Elastic Parallelism. In
Proceedings of the ACM SIGCOMM 2023 Conference (New York, NY, USA) (ACM
SIGCOMM °23). Association for Computing Machinery, New York, NY, USA,
406-419. doi:10.1145/3603269.3604816

Kaggle. 2012. Titanic: Machine Learning from Disaster. https://www.kaggle.com/
c/titanic. Accessed: 2025-09-12.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427-444. https:
//www.usenix.org/conference/osdi18/presentation/klimovic

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, So-
mali Chaterji, and Saurabh Bagchi. 2022. ORION and the Three Rights: Sizing,
Bundling, and Prewarming for Serverless DAGs. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA,303-320. https://www.usenix.org/conference/osdi22/presentation/
mahgoub

J. P. McMullin, B. Waters, D. Schiebel, W. Young, and K. Golap. 2007. CASA
Architecture and Applications. https://casa.nrao.edu/ Astronomical Data Analysis
Software and Systems XVI, ASP Conference Series, Vol. 376, p.127.

Microsoft Corporation. 2025. Azure Logic Apps. https://azure.microsoft.com/en-
us/products/logic-apps. Accessed: 2025-07-29.

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 193-206. https://www.usenix.org/conference/nsdi19/presentation/
pu

[20] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 779-788.
doi:10.1109/CVPR.2016.91

Josep Sampé, Marc Sanchez-Artigas, Gil Vernik, Ido Yehekzel, and Pedro Garcia-
Lopez. 2023. Outsourcing Data Processing Jobs With Lithops. IEEE Transactions
on Cloud Computing 11, 1 (2023), 1026-1037. doi:10.1109/TCC.2021.3129000
Marc Sanchez-Artigas, German T. Eizaguirre, Gil Vernik, Lachlan Stuart, and
Pedro Garcia-Lopez. 2020. Primula: a Practical Shuffle/Sort Operator for Server-
less Computing. In Proceedings of the 21st International Middleware Conference
Industrial Track (Delft, Netherlands) (Middleware °20). Association for Computing
Machinery, New York, NY, USA, 31-37. doi:10.1145/3429357.3430522
Mohammad Shahrad, Rodrigo Fonseca, iﬂigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: characterizing and optimizing the
serverless workload at a large cloud provider. In Proceedings of the 2020 USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC’20). USENIX
Association, USA, Article 14, 14 pages.

Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: SLO-Aware
Dynamic Resource Configuration for Serverless Function Workflows. In IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications. 1868-1877. doi:10.
1109/INFOCOM48880.2022.9796962

Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and Ion Stoica.
2021. Caerus: NIMBLE Task Scheduling for Serverless Analytics. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21). USENIX
Association, 653-669. https://www.usenix.org/conference/nsdi21/presentation/
zhang-hong

Zili Zhang, Chao Jin, and Xin Jin. 2024. Jolteon: Unleashing the Promise of
Serverless for Serverless Workflows. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24). USENIX Association, Santa Clara,
CA, 167-183. https://www.usenix.org/conference/nsdi24/presentation/zhang-
zili-jolteon

Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2022. AQUATOPE:
QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless
Workflows. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 1
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 1-14. doi:10.1145/3567955.3567960

(1]

[12

[16

(17]

[18

[19

[21]

[22]

[23

[24

[25

™
2

[27

https://github.com/CLOUDLAB-URV/flexecutor
https://github.com/CLOUDLAB-URV/flexecutor
https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://docs.aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/
https://doi.org/10.1109/CCGrid59990.2024.00069
https://arxiv.org/abs/2407.14331
https://arxiv.org/abs/2407.14331
https://doi.org/10.1145/3490386
https://doi.org/10.1145/3490386
https://airflow.apache.org
https://doi.org/10.1145/3357223.3362711
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://doi.org/10.1016/J.JPDC.2024.104891
https://doi.org/10.1016/J.JPDC.2024.104891
https://doi.org/10.1007/978-3-030-78307-5_3
https://doi.org/10.5281/zenodo.8101639
https://doi.org/10.5281/zenodo.8101639
https://cloud.google.com/workflows
https://cloud.google.com/workflows
https://doi.org/10.1145/3603269.3604816
https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi22/presentation/mahgoub
https://www.usenix.org/conference/osdi22/presentation/mahgoub
https://casa.nrao.edu/
https://azure.microsoft.com/en-us/products/logic-apps
https://azure.microsoft.com/en-us/products/logic-apps
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.1145/3429357.3430522
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://www.usenix.org/conference/nsdi21/presentation/zhang-hong
https://www.usenix.org/conference/nsdi21/presentation/zhang-hong
https://www.usenix.org/conference/nsdi24/presentation/zhang-zili-jolteon
https://www.usenix.org/conference/nsdi24/presentation/zhang-zili-jolteon
https://doi.org/10.1145/3567955.3567960

	Abstract
	1 Introduction
	2 Background
	3 Dissecting the usability problem
	4 Flexecutor: the out-of-the-box solution
	4.1 Scaffolding the DAG
	4.2 Enabling Smart Provisioning
	4.3 Example: Word Counter App

	5 Example workloads
	6 Evaluation
	7 Conclusions
	References

