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Abstract
Serverless computing enables applications to scale dynamically

without manual server management, with users paying only for the

actual compute resources consumed. In the context of parallel work-

load execution, the problem of determining how many resources to

provision and of what size has been extensively studied in recent

years. However, existing approaches often present usability chal-

lenges, such as ad-hoc implementations or tight integration with

a single cloud provider, which hinder the efficient deployment of

new applications. In this work, we introduce Flexecutor, a Python

library built on top of Lithops that unifies state-of-the-art serverless

provisioners into a reusable and easy-to-use framework. Flexecutor

abstracts away the underlying complexity, providing practitioners

with a simple interface to deploy, manage, and optimize serverless

workflows across multiple FaaS platforms. With Flexecutor, the

deployment effort for coding serverless workflows is significantly

reduced, while enabling the seamless integration of new smart

provisioning strategies.
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1 Introduction
Serverless computing, and more specifically the Function-as-a-

Service (FaaS) model, delivered to practitioners a new computa-

tional paradigm in which they could abstract away server man-

agement, delegating to the cloud provider the provisioning and

operation of servers, used only for the time actually needed. The

advantages of FaaS over traditional computing are several: (1) no

infrastructure management, (2) instantaneous provisioning and

very high elasticity [9], and (3) a pay-as-you-go model, where costs

are incurred only for the actual compute time consumed.

FaaS services offered by cloud providers have beenmostly adopted

for web application deployment and event-based computations [23],

typically in the form of short-lived activations. However, numer-

ous efforts in the scientific literature (see Section 2), as well as

some commercial solutions, leverage the computational power —

and the very high scalability provided by FaaS— as a workhorse

for the distributed execution of parallelizable workloads. In this

work, we establish the term serverless workflows to refer to such

tasks: parallel computations that exploit the elasticity of FaaS to

launch massive-scale executions. The framework of reference for

executing serverless workflows is Lithops [21], a Python-based

parallel computing framework that offers a unified API to launch

workloads in parallel across different FaaS providers: AWS Lambda,

Azure Functions, GCP Functions and more.

Although the use of serverless computing for launching par-

allel workloads is highly attractive (scaling from zero resources

to large-scale in very short times, and paying only for compute

time) compared to the serverful approach [10], this does not imply

that the serverless model is, by itself, close to optimal. Resource

provisioning for the execution of serverless workflows has been ex-

tensively studied by the scientific community [1, 8, 13, 16, 19, 25–27].

While addressed in different ways, the common challenge remains:

determining (1) the required number of functions and (2) the opti-

mal function resource configuration according to the practitioner’s

objectives, which may involve minimizing cost, execution time, or

a trade-off between both. To the best of our knowledge, all existing

provisioning solutions for serverless workflows face accessibility

and usability challenges: some are not open-source [1, 13, 13, 24, 25],

which prevents direct usage, while others, although publicly ac-

cessible, are ad-hoc implementations that (1) integrate with only a

single FaaS provider [8, 16, 26] and/or (2) are not released as reusable

libraries for the implementation of new serverless workflows [16].
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Flexecutor is the Python library we propose to overcome these

limitations in a unified manner. Our solution builds upon Lithops to

extend this popular framework with all the necessary directives to

simplify workflow management [2, 12, 18] and support the end-to-

end optimization of resource provisioning for serverless workflows,

fully transparent to the underlying implementation. The Flexecutor

API exposes all the required operations to cover the complete life-

cycle of the provisioning problem. The library, abstract by design,

currently integrates four state-of-the-art serverless smart provision-

ing solutions (Caerus [25], Ditto [13], Orion [16], and Jolteon [26]),

while leaving the door open to seamless integration of future ap-

proaches.

The main contribution of this work is to provide practitioners

with the necessary tool to optimize their serverless workflows.

While until now the development and implementation of serverless

workflows has been a complex, time-consuming, and error-prone

process, our out-of-the-box library minimizes the efforts required

to deploy, configure, and manage these workflows, providing a

unified and reusable interface for state-of-the-art serverless smart

provisioning solutions.

The structure of this paper is as follows. In Section 2, we review

the background behind the solution. Section 3 focus on the usabil-

ity frictions noticed in the field. Section 4 presents Flexecutor, the

unified library that facilitates the usage of serverless smart provi-

sioners. Section 5 introduces a set of test applications integrated into

the library. Section 6 evaluates the performance of the integrated

serverless smart provisioners, and finally, Section 7 concludes the

paper.

2 Background
While most serverless usage targets short-lived, independent ac-

tivations (HTTP requests, event-driven operations) [23], the use

of multiple concurrent serverless functions as a computation en-

gine for parallel workloads is relevant and has been thoroughly

studied. Serverless workloads (hereafter referred to as serverless
workflows for convenience) are Directed Acyclic Graphs (DAGs),

where each node represents a computational stage composed of a

set of concurrent serverless functions, typically operating over a

dataset. Communication between stages can occur through different

possible backends [4, 5, 15, 22], with object storage being the most

common. Lithops [21] is a Python library that, in a cloud-agnostic

manner, allows executing serverless workflows on the desired cloud

provider with minimal configuration and coding overhead.

However, using Lithops to deploy serverless workflows does

not end the practitioner’s concerns. Once a serverless workflow

is programmed, there are still variables to optimize (see Figure 1):

how many functions should be provisioned for a computational

stage (horizontal scaling), and what size should each function be

(vertical scaling)? The answers to these questions are not unique

and depend on the user’s objective: do I want my workflow to execute
as fast as possible? Do I want to spend the least amount of money?
Or do I prefer a trade-off between both? In short, depending on the

user’s goal, there exists a serverless resource optimization problem

that has been extensively addressed in the scientific literature [1,

8, 13, 16, 19, 24–26]. Commonly, smart provisioners identify the

Pareto-optimal curve in the execution time vs. cost plane. A brief

technical overview of a subset of smart provisioners is presented

in Table 1.

Data / workload

Function
allocation

(vCPU/RAM)

Number of instances

Price?
Time?
Performance?

Code

Targets

Figure 1: Visualising the serverless provisioning challenge.

Impl. Description

Caerus Based on the NIMBLE algorithm, it schedules tasks in server-

less DAGs at the right moment to minimize cost and com-

pletion time. It models fine-grained dependencies between

pipelineable and non-pipelineable steps.

Ditto By decoupling parallelism configuration from function place-

ment, the system introduces a new scheduling granular-

ity—“stage groups”—to optimize job completion time and cost.

Orion Represents function latency as distributions rather than single

values and combines them with convolution (series) and maxi-

mum (parallel). It considers correlations between functions to

accurately estimate end-to-end latency in serverless DAGs.

Jolteon Combines white-box and black-box modeling into a stochastic

model for serverless workflows, converting the uncertain opti-

mization problem into a deterministic one using Monte Carlo

sampling. It finds optimal resource configurations via gradient

descent thanks to convexity.

Table 1: Summary of some smart provisioners for serverless
workflows.

However, the scope of this work is not to delve into the technical

implementation of serverless smart provisioning. The main focus is,

after identifying common abstract operations inherent to smart pro-

visioning (see Section 3), to provide a single, easily usable solution

for practitioners seeking to optimize their serverless workflows.

3 Dissecting the usability problem

Uncovered gaps in smart provisioning. Existing serverless

smart provisioning frameworks present significant usability chal-

lenges, as summarized in Table 2. Most of these tools are research

prototypes: they are described and evaluated in papers, but no

publicly-accessible code is provided [1, 13, 19, 24, 25]. This makes
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Open

source

Cloud

agnostic

DAG

mgmt.

Smart

provisioning

API

Caerus [25] %* - - -

Ditto [13] %* - - -

Locus [19] % - - -

Cose [1] % - - -

Stepconf [24] % - - -

Aquatope [27] ! % ! !

Orion [16] !* % % %

Jolteon [26] ! % ! Partially

PowerTuning [8] % % % !

Flexecutor ! ! ! !

*Re-implemented by Zhang et al. [26]

Table 2: Usability and feature coverage of state-of-the-art
smart provisioning solutions.

it impossible to reuse the existing solutions directly, leaving re-

implementation as the only option—a process that is often infeasible

due to technical and temporal complexity.

Even when source code is available, additional limitations per-

sist. Many tools are tightly coupled to a specific cloud provider [8,

16, 26, 27]; others do not allow native DAG declaration and or-

chestration [8, 16]; and some offer ad-hoc APIs that do not expose

operations aligned with standard smart provisioning practices [16].

These combined limitations motivated the development of Flex-

ecutor, which aims to eliminate the usability barriers present in

current open-source smart provisioning solutions.

Smart provisioning operations must be abstracted. Across

the surveyed tools, a common high-level pattern emerges: the op-

erations available to users are largely shared across different im-

plementations. In other words, despite the underlying technical

differences, the systems are composed of the same fundamental op-

erations. Flexecutor abstracts these operations into a single unified

interface, which includes:

• Profile: Executes the serverless workflow under different

user-defined resource configurations and collects execution

metrics.

• Train: Uses the recorded metrics to build a predictive model

(via an implementation-specific learning algorithm) that esti-

mates execution time and cost for a given resource allocation.

• Predict: Infers execution metrics from the model for any

specified resource configuration.

• Optimize: Searches for the optimal configuration according

to the user-selected objective, determining the best resource

allocation for all stages of the DAG.

• Execute: Runs the DAG under the chosen configuration. This

operation can be triggered automatically by the system (after

Profile or Optimize) or explicitly by the user.

In summary, prior to this work, available serverless smart provi-

sioning solutions were fragmented in structure and lacking usabil-

ity, creating high barriers for practical adoption. Flexecutor con-

solidates these diverse solutions into a single, unified framework,

addressing the usability gap and providing a consistent, high-level

interface for all core smart provisioning operations.

4 Flexecutor: the out-of-the-box solution
As discussed in previous sections, Flexecutor emerges as a response

to the usability frictions identified in existing smart provisioners.

The solution is implemented as a Python library of approximately

5.5k SLoC, providing essentially a client-side orchestration system

for serverless DAGs, native integration with the Lithops compute

engine, comprehensive support for smart provisioning, and an ex-

tensible design aimed at incorporating new provisioners. To struc-

ture the tool description, this section presents it from a structural

perspective, the following section from a functional perspective,

and finally we conclude with an example illustrating how to pro-

gram serverless workflows over Flexecutor.

4.1 Scaffolding the DAG
The architecture of Flexecutor is based on several Python classes

that encapsulate the data structures required for orchestrating and

smart provisioning serverless workflows. Figure 2 depicts the key

entities of the system. The central piece is the DAG entity, which

constitutes a Directed Acyclic Graph organizing the different stages

that compose a workflow. Each Stage is defined by the function

code to be executed, called fn_code, and by two collections that

group its inputs and outputs. These collections are represented
through the FlexData entity, which acts as a logical abstraction

over objects stored in object storage and their distribution policy

(one-to-one, scatter, broadcast, on-the-fly partitioning [3], etc.).

Data access, which in serverless workflows involves constant

exchanges of objects between storage and FaaS functions, is thus

automated and hidden from the user. To achieve this, each stage has

an execution context (StageContext), through which the fn_code
retrieves input paths and defines output paths. The user only needs

to implement a function that accepts one parameter which type

is StageContext and, via using operations get_input_paths and

next_output_path, can read from and write to the storage system.

Once this fn_code is defined, it is associatedwith the corresponding
stage, and the stage becomes part of the DAG.

The full DAG is constructed incrementally. After instantiating the

initial graph, the various stages are added, and finally, the depen-

dencies that determine execution order are declared. Flexecutor

adopts a syntax inspired by Apache Airflow [6], which facilitates

understanding and reduces the learning curve for users familiar

with workflow orchestration systems. In this way, the user declara-

tively defines the graph and associated functions, while Flexecutor

automatically manages both data transfers and workflow execution

on Lithops.

4.2 Enabling Smart Provisioning
Once the DAG has been built, the next step is to provide the op-

erations required for serverless smart provisioning. In Section 3,

we reviewed the common actions performed by existing smart

provisioners—namely profile, train, predict, optimize, and
execute. The DAGExecutor class exposes these five methods di-

rectly to the programmer, providing a one-to-one correspondence.

16



WoSC11 ’25, December 15–19, 2025, Nashville, TN, USA E. Molina-Giménez et al.

DAGStage DAGExecutor
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Scheduler
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Figure 2: High-level diagram representing class structure in Flexecutor.

Figure 3 helps illustrate the different smart provisioning directives

and their lifecycle during the provisioning process.
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Figure 3: Flexecutor operative lifeycle.

Some of these methods, such as profile and execute, are com-

mon to all provisioners, as they merely execute the serverless work-

flow on the target service (and collect metrics). To enable this func-

tionality, DAGExecutor internally wraps Lithops, mapping each

stage of the workflow to a Lithops map() operation while orches-

trating the DAG.

Other operations, namely train, predict, and optimize, are
specific to the selected smart provisioner (Scheduler). The user
must indicate which Scheduler to associate with DAGExecutor
(choosing among four options: Caerus, Ditto, Orion, or Jolteon)
and provide the Scheduler hyperparameters, such as optimization

targets (minimum cost, maximum performance) and any scheduler-

specific parameters.

Once configured, these operations are executed transparently to

the user. This seamless behavior is made possible by the abstract

Scheduler structure, which not only ensures consistent execution

across different provisioners but also allows future integrations

with new smart provisioners without requiring changes to the core

system.

1 if __name__ == "__main__":
2

3 # Parallel function definition
4 def word_count(ctx: StageContext):
5 txt_paths = ctx.get_input_paths("input")
6 for input in inputs:
7 with open(input , "r") as f:
8 content = f.read()
9 count = len(content.split ())
10 count_path = ctx.next_output_path("output")
11 with open(count_path , "w") as f:
12 f.write(str(count))
13

14 @flexorchestrator ()
15 def main():
16 dag = DAG("hellodag")
17 # Configure the DAG stages
18 stage1 = Stage(
19 "map",
20 func=word_count ,
21 inputs=FlexData(prefix="input"),
22 outputs=FlexData(prefix="output"),
23 )
24 stage2 = Stage (...)
25 # DAG dependency definition
26 stage1 >> stage2
27 dag.add_stages ([stage1 , stage2 ])
28 # Instance executor and perform operations
29 executor = DAGExecutor(dag , Jolteon (...))
30 executor.profile ([ ConfigSpace (...) , ...])
31 executor.train ()
32 executor.optimize ()
33 executor.shutdown ()
34

35 main()

Listing 1: Example DAG: counting words.

4.3 Example: Word Counter App
To illustrate the use of Flexecutor, we present a simple serverless

workflow that counts the number of words in a set of text files

(Listing 1). The workflow is organized as a DAGwith multiple Stage
(map-reduce word counter), although for brevity we only reference

the first stage.

The first stage processes input .txt files and produces output

files containing the word counts, transparently using the FlexData
abstraction. word_count is the function that iterates over the input

files, reads their content, calculates the number of words, and writes

the result to the corresponding output path using get_input_paths
and next_output_pathmethods of StageContext. Once declared,
the Stage is added to the DAG.
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Once the DAG is fully defined, an instance of DAGExecutor takes

care of its execution. It receives the instance of the Scheduler
specified by the user (Jolteon in this case). With this setup, the

smart provisioning operations (profile, train, optimize, etc.) are
ready to be executed.

This example demonstrates the key features of Flexecutor: declar-

ative DAG construction, automatic data handling, seamless inte-

gration with Lithops, and transparent orchestration of smart pro-

visioner operations. Although simple, it is representative of the

framework’s ability to structure and optimize the execution of

serverless workflows.

5 Example workloads
Flexecutor library is not only delivered as a solution to the usability

issues discussed in this work, but it also comes with a set of example

applications provided for learning, development, and testing pur-

poses. Below, we give a brief overview of the mission and structure

of each example serverless workflow:

Titanic app: its particularity is that it is a monostage app. An arbi-

trary number of parallel functions train a random forest classifier

on the popular Titanic dataset [14]. The goal of this training is to

predict the survival of the ship’s passengers.

Video app: based on Pocket [15], it is responsible for splitting

videos, extracting frames, preprocessing them, and classifying them

in four different stages. As a particular feature, some frames are

preprocessed before being analyzed by the YOLO [20] model, while

others are sent directly to classification. Each run processes one-

minute videos in the Music and News categories, covering a mix of

content for evaluation.

Machine learning app: This ML workflow, inspired by Cirrus [7],

operates through four consecutive stages: reducing dimensionality

with PCA, training models, merging them, and testing. The training

phase leverages the LightGBM library to run several parallel pro-

cesses that generate multiple decision trees, which are later merged

into a single random forest.

Radio interferometry app: This large-scale serverless workflow
use case, developed within the EXTRACT EU project [11], han-

dles large volumes of radio astronomy data from NenuFar tele-

scopes. Featured as a showcase in Flexecutor, it executes rebinning

of Measurement Set (MS) files [17], precise signal calibration, and

sophisticated subtraction to eliminate noise and interference. Once

calibrated, the pipeline produces high-fidelity images of the ob-

served sky regions.

6 Evaluation

Smart provisioners integration. Flexecutor integrates four smart

provisioners—Caerus, Ditto, Orion, and Jolteon—into a unified

framework. While a direct comparison of code complexity before

(without Flexecutor) versus after (with Flexecutor) may seem tempt-

ing, it is important to keep in mind that the original baselines were

released as research prototypes. They provide the heuristics needed

for provisioning optimization according to each method, but were

never intended as ready-to-use tools.

Flexecutor takes care of the underlying framework code, saving

users from implementing hundreds of lines of low-level logic. At

30% 40% 50% 60%
Orchestration time (%)

Vanilla Lithops

Flexecutor

Figure 4: Orchestation time (%) respecting total execution
time in video app.

repository checkout 34f755d, the difference is clear: Caerus is 261
SLoC, Ditto 476 SLoC, Orion 508 SLoC, and Jolteon 855 SLoC. This

abstraction drastically lowers the implementation effort while still

giving access to state-of-the-art provisioning strategies.

We also tested Flexecutor with video processing and machine

learning workloads (see Section 5). Using the same setup described

for Jolteon in Section 6.1 of Zhang et al. [26], we reproduced the

results shown in Figures 9b and 9c of the same work with no mean-

ingful differences, showing that Flexecutor preserves the perfor-

mance of the original smart provisioners while making them much

easier to use.

DAG orchestration and data management systems. Flexecu-
tor builds on top of Lithops to provide a system that enables both

(1) seamless DAG declaration, in the style of Apache Airflow [6],

and (2) explicit data dependency management, with FlexData in-
puts and outputs defined at each stage of the serverless workflow.

Vanilla Lithops offers none of these abstractions, leaving users to

implement them manually. To quantify the impact of Flexecutor,

we evaluate both the simplification it provides and any runtime

overhead introduced in DAG orchestration.

Application Lithops SLoC Flexecutor SLoC SLoC savings (%)

ML app 322 278 13.66%

Titanic app 80 63 21.25%

Video app 247 180 27.13%

Table 3: SLoC savings and runtime overhead (Flexecutor vs
vanilla Lithops) for different applications.

In Table 3, we show the reduction in SLoC achieved with Flex-

ecutor, with savings ranging from 13.66% to 27.13% across the appli-

cations presented. Regarding the evaluation of DAG orchestration

performance, Figure 4 compares vanilla Lithops (without DAG

awareness) with Flexecutor, based on 10 runs of the video applica-

tion for each approach. On the X-axis, we show the orchestration

time (i.e., the total execution time minus the periods in which the

client is blocked by FaaS invocations). We observe that introducing

the DAG orchestration system does not impose any overhead on

application performance.

7 Conclusions
Throughout this work, we have shown that resource provisioning

for serverless workflows has been a long-standing challenge, ad-

dressed by a wide range of heuristics and optimization strategies

in the literature. While these approaches offer valuable techniques

for fine-tuning resource allocation, they often remain narrowly

18
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focused on the complexity of the provisioning problem itself. Cru-

cially, they tend to overlook the need for a fully-fledged solution

that embraces the entire lifecycle of serverless workflows — from

coding and orchestration to execution and optimization.

With Flexecutor, we address these limitations by introducing an

open-source, cloud-agnostic framework that brings together all the

core operations required to work with serverless workflows. Flex-

ecutor not only abstracts away smart provisioning but also provides

end-to-end orchestration capabilities, empowering developers and

researchers alike to experiment, deploy, and scale workflows with

minimal friction.

Code is publicly available at https://github.com/CLOUDLAB-

URV/flexecutor. We actively encourage the community to both use

the tool and extend it with new features. Thanks to its modular

and extensible design, Flexecutor paves the way towards future

integrations with additional function schedulers and advanced pro-

visioning strategies, always with the ultimate goal of lowering the

barriers to working effectively with serverless workflows.

In this sense, Flexecutor represents not just another optimization

method, but a comprehensive, extensible, and practical step forward

— bridging the gap between theoretical approaches and real-world

deployments.
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